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Abstract: Graphics calculators have the potential to influence the 
curriculum in several ways, including affecting what is taught, how it is 
taught and learned and how it is assessed. These relationships are 
exemplified for the particular case of sequences and series, which 
frequently appear in mathematics curricula near the end of secondary 
school and in the early undergraduate years. Attention will focus on the 
ways in which these mathematical objects can be represented, viewed, 
manipulated and understood by students using graphics calculators. Key 
concepts associated with sequences and serie s are examined from a 
calculator perspective. The paper provides an analysis of the mathematics 
curriculum through the lens of an available technology, with a view to 
providing suggestions and recommendations for both curriculum 
development and classroom practice. 

 
The major significance of the personal technology of the graphics calculator is that it has the 
potential to be integrated into the mathematics curriculum, rather than be regarded as an ‘extra’ or 
as a ‘teaching aid’. This paper provides an analysis of the relationships between the graphics 
calculator and one part of the mathematics curriculum, concerned with sequences and series, with a 
view to understanding the significance of the technology. The paper might thus be regarded as a 
companion to previous papers offering similar analyses, such as Kissane (1997) for probability, 
Kissane (1998a) for inferential statistics, Kissane (1998b) for calculus and Kissane (2002a) for 
equations. 
 
To focus the analysis, it is convenient to use the structure suggested by Kissane (2002b), reflecting 
three different roles for technology in the curriculum. A calculator has a computational role, 
handling some aspects of mathematical computation previously handled in other ways. Secondly, a 
calculator has an experiential role, providing fresh opportunities for students to experience 
mathematics, and thus fresh opportunities for teachers to structure the learning programme. Finally, 
a calculator has an influential role, since the mathematics curriculum ought to be constructed with 
the available technology in mind; a curriculum constructed on the assumption that graphics 
calculators are routinely available might be expected to differ from a regular curriculum devoid of 
access to technology.  
 
Throughout the paper, we use the Casio cfx-9850GB PLUS graphics calculator to illustrate the 
main connections between the mathematics and the technology. This calculator is widely used in 
senior secondary schools and the early undergraduate year, and does not have CAS capabilities. The 



choice of a non-CAS calculator is deliberate: at the present time, these are more accepted by 
curriculum authorities and also they provide substantial pedagogical support for students and 
teachers. Further, an analysis of the relationships between an algebraic calculator (ie with CAS) and 
the curriculum can easily be constructed using the present work as a basis. 
 
Computational role 
Sequences are important mathematical objects, perhaps best defined as functions with domain the 
set of natural numbers or a subset of these. Although sequences are generally infinite structures (as 
the domain is infinite), in practice we are frequently interested in a finite subset. Graphics 
calculators are of course finite machines and thus capable only of dealing directly with finite 
sequences. Indeed, in the case of school mathematics, most applications of sequences and series are 
concerned with finite examples, which have the most plausible practical significance for students. 

Generating a sequence 
There are two essential ways in which sequences are defined, recursively and explicitly. A recursive 
definition specifies the relationship between successive terms of the sequence, as well as defining 
the starting point. An explicit definition provides a direct way of determining each term of the 
sequence. A sequence can be generated on a calculator in either of these ways. 
 
Consider the elementary example of the arithmetic sequence, 7, 11, 15, 19, … . Successive terms of 
this sequence can be generated on a calculator by using the fundamental property that each term is 
four greater than the previous term, starting with a first term of 7. A graphics calculator allows this 
process to be automated, as shown in the screen below, in which successive terms after the second 
are generated by repeating the recursive command, Ans + 4, which involves only a single key press. 
 

 
 
Although this can be an efficient way of finding a particular term, it may be quite tedious (and thus 
error-prone) for finding terms that are not close to the first term. An explicit formula for the same 
sequence is given by  T(n) = 7 + 4(n – 1). On a calculator, such a formula can be entered as a 
function and tabulated to produce successive terms efficiently, as shown below. 
 

           
 
In this case, the commands above generate the first 50 terms of the sequence, substituting the 
calculator function Y1 = 7 + 4(X – 1) for the sequence function  T(n) = 7 + 4(n – 1). 
 
In order to perform computations with sequences, it is necessary to first store them in the calculator 
in some way, which the procedures above do not accomplish directly. The essential means of doing 



this on a calculator is with an ordered list. In the case of the Casio cfx-9850GB PLUS, lists are 
restricted to 255 elements, which is more than ample for almost all secondary school purposes in 
practice. Sequences can be defined recursively or explicitly. To illustrate these alternatives, 
consider the geometric sequence with first term 5 and common ratio 2: 
 

5, 10, 20, 40, … 
 
An explicit definition of this sequence {T(n)} is T(n) = 5 × 2n – 1,   n = 1, 2, 3, …  An explicit rule 
can be used in a calculator to generate successive terms. The screens below show how to generate 
the first twenty terms of this example and store them in List 1. 
 

      
 
An explicit rule can also be used in the Recursion mode of the calculator (somewhat paradoxically): 
 

           
 
A recursive definition of the sequence is:  T(1) = 5; T(n + 1) = 2 × T(n), n = 1, 2, 3, … This 
definition may be entered directly into the calculator and the sequence generated, as shown below. 
 

           
 
Recursive definitions of sequences are not restricted to the relationship between successive terms; 
the screens below show the Fibonacci sequence, for which each term is the sum of the previous two 
terms, starting with the first and second terms being 1: 
 

           
 
Once a sequence has been defined and stored in the calculator, the value of any term of the 
sequence can be readily determined by scrolling the relevant list. 



Evaluating series 
Adding successive terms of a sequence gives rise to a series, best regarded as the sequence of 
partial sums of a sequence. This is readily accommodated with a cumulate command on the 
calculator, one of the List functions available through the OPTN command in Run mode. The 
screens below show some examples of how this command produces the series corresponding to the 
geometric sequence above, 
 

   
 
Similar computations are available for any sequence that has been stored as a list and may be 
performed directly in List mode or Statistics mode of the calculator as well as in Run mode. 
 
In addition, the Recursion mode of this calculator allows for series to be determined routinely at the 
same time as a sequence is generated. Some results of this are shown below for the case of the 
geometric sequence defined previously: 
 

 
 
The screen shows the sequence of partial sums: 5, 15, 35, 75, … From this sequence, users can see 
that the sum of the first four terms of the sequence is 75. 
 
Alternatively, the calculator provides a summation function (Σ) to evaluate a series in Run mode, 
without the need to generate and store all the terms of the corresponding sequence. For some 
purposes, the storage limitation on the number of terms of a sequence prevents questions being 
addressed directly.  
 
Experiential role 
The defining aspect of an experiential role (Kissane, 2002b) is that the calculator provides students 
with opportunities not otherwise readily available for learning by experience. In this section of the 
paper, some examples of this are offered. 
The ease of generating a sequence on a calculator offers students a chance to see the sequence as 
whole rather than merely focus on individual terms. Rather than use standard formulas for 
calculating a particular term or a series, students can investigate the sequence generated by a 
calculator. The ease of generation offers this sort of opportunity, which can be exploited in a 
number of ways. For example, the screens that follow show two different ways of generating the 
same sequence, one of them using a recursive rule (an+1) and the other using an explicit rule (bn+1). 
Investigating these two rules simultaneously in this way seems likely to help students understand 
each one better than might otherwise be expected and to explore the conceptual links between them. 



           
 
An important contribution of the calculator to student learning is that it offers ways of visualising 
sequences and series. Traditional approaches have tended to emphasise the numerical aspects, but 
adding a visual dimension offers an opportunity to understand better the concepts involved. This 
seems particularly the case for the concept of convergence. 
 
Because a sequence can be regarded as a function with domain the natural numbers, a visual 
representation is essentially a scatter plot with the natural numbers on the horizontal axis and the 
terms of the sequence on the vertical axis. The screens below show a representation of the sequence 
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Despite the imperfections resulting from the chosen scales, the graph provides informal support for 
the idea that successive terms of the sequence are approaching a particular value. Students can 
explore this idea readily by graphing a larger number of terms, as shown below. 
 

      
 
The screens above suggests that the sequence converges, with the graphical display reinforcing the 
impression conveyed by the numerical table of values. Of course, neither of these is a proof of 
convergence, but the role of the calculator is to offer conceptual support for the concept of 
convergence. The actual limit of the sequence can also be suggested by finding directly the values 
of terms with large values of n, as suggested by the screens below. 
 

      



A convergent series is one for which the sequence of partial sums converges, and again a calculator 
provides helpful visual support for this idea. For example, the series given by 
 

  
s(n) =

1
k!k=0

n

∑  

 
can be readily seen visually to converge to e, with a very fast rate of convergence (compared with 
the previous sequence) as shown below. In this case, the parent sequence converges to zero, partly 
helping to make sense of the convergence of the series. 
 

           
 
The third screen above shows again that results of this kind are also available with the Σ command 
without needing to obtain each of the terms of the sequence, as noted earlier. Students can get a 
sense of the rate of convergence by evaluating successive series directly. 
 
Access to a graphics calculator allows for this sort of work to be readily extended to sequences for 
the exponential function. Thus, the series given by 
 

  
s(n) =

2k
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can be seen to also converge quite rapidly to e2 = 7.389056… , as the screens below indicate. 
 

      
 
Generalisations of this kind are readily suggested by such explorations, so that students can 
investigate for themselves the consequences of replacing the 2 by another integer, or indeed by 
another real number, to get a numerical sense of the remarkable Taylor series result: 
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k!k=0

∞

∑  

 
Explorations of this kind cannot be undertaken without access to a technology to quickly generate 
results, so that the calculator is providing an important mathematical experience not otherwise 
available. Of course, it does not always follow that sequences converging to zero have convergent 



series associated with them, and students can use a calculator to explore for themselves the 
harmonic sequence as a good illustration of this: 
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The screen on the right below shows the first 250 terms of the corresponding harmonic series, 
which visually suggests that convergence is not occurring, in contrast to the previous series. 
 

      
 

The resolution on the screen has the potential to mislead students here, however, as it looks as if the 
graph is horizontal in places towards the right of the screen. A supplementary approach that 
confronts such a misconception is to use a summation command to evaluate many more terms of 
the series than the calculator is capable of graphing. The screens below show the sum of the first 
500 terms and the sum of the first 1000 terms respectively of the harmonic series:  
 

      
 
Although the calculator computes these sums by generating each term and adding them, it does not 
store the terms for later analysis, so the restriction on the maximum number (255) of terms of a 
sequence is not an impediment to the computation, and the lack of convergence is demonstrated a 
little more convincingly.  
 
Although a formal mathematical proof is required to place such observations  on a solid footing, the 
role of the calculator here is to help students make sense of the difficult ideas involved and perhaps 
also to provoke a search for a good analytic proof of results to support observations. Indeed, as 
ideas of convergence and divergence necessarily involve the infinite, no form of technology can do 
more than suggest what is happening, an important realisation for students to acquire and a 
powerful motivation for coming to terms with the formal mathematical arguments. In this case, the 
calculator provides a numerical and a graphical perspective, both important to supplement the 
symbolic perspective associated with the standard analytic proof of divergence. 
 
Explorations of other kinds of behaviour of sequences and series are available with these basic 
tools. For example, informal explorations of Gregory’s series  
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allow students to see the (slow) convergence of an oscillating series, as shown below: 
 

           
 
Successive terms of this series have been plotted above first with line segments joining successive 
points for visual effect, although a graph ought properly comprise only discrete points, as shown in 
the third graph above. Issues of this kind ought be adequately discussed in the classroom. 
 
Another kind of learning opportunity offered by the calculator involves finding explicit formulas for 
series. A standard mathematics curriculum usually requires students to have some awareness of the 
(elegant) arguments for evaluating arithmetic and geometric series, but rarely involves other kinds 
of series, because of the complexities involved. Using a graphics calculator, some access to other 
ways of finding a formula for a series are available. To illustrate, consider the series 
 

  s(n) = 12 + 22 + 32 + ... + n 2 
 
Successive partial sums of the series can be evaluated directly, as shown below, and the (finite) 
sequences involved can be readily transferred to the data analysis area of the calculator. 
 

      
 
A scatter plot of the successive partial sums versus the number of terms shows a clear curvilinear 
relationship for the first ten terms as shown below. 
 

           
 
Within the limitations of the numerical accuracy of the calculator, students can see that a cubic 
relationship fits these data very well, matching nicely the pattern that might be expected on the 
basis of the sum of successive integers having a quadratic form. Provided they are prepared to 
accept the value of d above to be zero and the numerical coefficients to be decimal versions of 
fractions, students can use procedures of this kind to see that the series is determined by 
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This result is readily verified on the calculator in various ways, one of which is shown below. 
 

      
 
While such methods do not of course constitute a proof of the corresponding results, they offer 
students new opportunities to explore relationships of these kinds for themselves and provide some 
incentive to look for mathematical arguments that justify their observations. Cuoco (2003) recently 
described other ways of representing a table of results with an explicit formula, using successive 
finite differences, but space precludes a full treatment of this sort of technique here. Calculators 
readily permit numerical explorations of this kind, once sequences are stored adequately, and offer 
a stimulus to more advanced thinking about the empirical results obtained. 
 
Influential role 
As suggested in Kissane (2002b), a technology device such as a graphics calculator might be 
expected to influence opinions on which aspects of mathematics ought to be emphasised and 
regarded as important, provided the device is reasonably likely to be available to all students.  
 
One clear implication in the present case is that the previous emphasis on computation of terms of 
sequences and series might reasonably be reduced, since students can readily find a given term of a 
given sequence and evaluate corresponding series directly on the calculator. It still seems important 
for students to appreciate the conceptually pleasing formulas for arithmetic and geometric 
sequences and the neat arguments provided to justify the evaluation of the corresponding series. 
The availability of the graphics calculator offers an opportunity to focus more attention on 
meanings and less on computations. In this vein, the conceptual links between recursive and explicit 
definitions of sequences deserve more attention than they have often received in the past. 
 
A second implication is that more attention might be devoted to the tasks of recognising sequences 
and finding ways to represent them that facilitate their evaluation. It is not an easy matter, for 
example, to represent the Gregory series above in a form that allows it to be examined, and students 
need help to think about sequences and series in this way. Similarly, explorations of the Taylor 
expansion of the sine function require students to represent the following series on a calculator: 
 

  
sin x = x − x3

3!
+ x 5

5!
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7!
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Less time spent on routine computations using standard formulas might free up some classroom 
time for such important learning. In addition, the curriculum might offer more opportunities to 
investigate approximations of this kind available through the use of sequences and series, since the 
approximations can be dealt with directly on the calculator, rather than relying on analytic aspects 
alone. 
 
Finally, the graphics calculator offers students opportunities to explore in an intuitive way 
mathematical ideas that were previously inaccessible to them. A very good example of this involves 



elementary notions of chaos, described in more detail in Kissane (2003, p.152). The screens below 
indicate some of the possibilities, using a particular example of the logistic sequence. (Again, for 
visual effect, the discrete sequence has been represented here as if it were continuous.) 
 

           
 
Activity of this kind has the additional advantage that it permits students to grapple with 
mathematical ideas that are seen to be current in popular literature, in stark contrast to much of 
school mathematics, which is centuries old. In an age when students are readily attracted to the new, 
and many of them are attracted away from mathematics itself, a conscious effort to move in this 
direction deserves some consideration. 
 
Conclusion 
A graphics calculator, such as Casio’s cfx-9850GB PLUS offers new opportunities for students to 
learn about sequences and series, partly because it provides new ways of dealing with the 
computational demands involved and partly because it allows students to explore mathematics in 
several different ways at once. These two observations together suggest that a revised curriculum 
might be expected if technology of this kind is routinely available to students. Constructing such a 
curriculum is not an easy matter, demanding that we carefully preserve the best of traditional 
mathematics, and yet make some space for the advantages offered for new ways of looking at 
mathematics. 
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