
Lupin: Towards the Framework of Web-based Problem
Solving Environments

K. Li, M. Sakai, Y. Morizane, M. Kono, and M.-T.Noda
Dept. of Computer Science, Ehime University, Japan∗

Abstract

The research of powerful Problem Solving Environments (PSEs) is strongly motivated by
the increasing diversity in scientific and engineering computation. In this paper, the first
design of Lupin, a layered framework of PSEs construction based on the Web is proposed
and discussed. The idea of invoking Web technologies such as XML and the emerging Web
services for Lupin’s approach; the conception of mathematical Web services and the im-
plementation of Lupin based on the conception are briefly considered. A proof-of-concept
system addressed by the combination of the current Web service protocols, MathML, Com-
puter Algebra Systems (CASs), interactive math and the relevant XML technologies is also
presented to check out the feasibility and disadvantages.

1 Introduction

The research of powerful Problem Solving Environments (PSEs) is strongly motivated by the
increasing diversity in scientific and engineering computation [3, 2, 19]. As complex software
systems, the traditional PSEs are monolithic. The main purpose of their designers is to
provide a solution to a specific problem rather than identify common function and build
a common PSE platform. This situation results largely a high-cost, heavy-coded ad hoc
procedure that lacks of flexibility, portability and generality on PSE construction. Due to this,
it is believed that the network-centric, interoperation-enabled common PSE mechanism that
exploits the existing hardware and software resources needs to be considered. There are many
notable works have been done to put forward PSE technologies on this way. Among those
efforts, most of their focuses are on the mathematical software integration that enables the
interoperation over networks [1, 4, 6, 5], while few of them aim at the sophisticated framework
that supports the whole lifecycle of PSE construction. Although PSE technology is improving
quickly, there are still lack of significant approaches that are, not only really language-,
vendor- and platform neutral that truly address the large-scaled, seamless integration; but
also simple, easy-to-use, and widely supported by the whole academic community. On the
other hand, PSE’s other critical facilities such as the semantic problem definition, automatic
or semi-automatic problem solver discovery are also of great challenges and have not been
significantly addressed yet. Obviously, much work is still ahead before achieving a common
fundamental network-centric mechanism for the easy-but-efficient PSE construction.

∗{likai, masato, morizane, kono, noda}@hpc.cs.ehime-u.ac.jp

Internet/Web is changing the way of processing information; it is also expected to play
the role of PSE platform and to facilitate the mechanism of PSEs creation. In recent years,
XML and its compliant Web services [7] are enabling applications discovery, registration,
and invocation over the Internet. Hence we predicate that it’s the time to consider the
mechanism of PSEs to be Web-based and truly support the “cheap and effective” computation
by enabling the problem solver’s portability, reusability and search-ability. Towards this end,
Lupin is our ongoing research subject in Ehime University, Japan that aims at:

• Establishing a Web-based mechanism and framework that allows easy and systematic
creation and construction of computational PSEs.

• Exploiting the standard Web technologies to support the infrastructure.

• Implementing a prototype to demonstrate the feasibility.

In this paper, we briefly present a common framework of Web-based computational PSEs.
A layered approach is given to enable the independent development and deployment of In-
ternet accessible PSE components (we call them Lupin services) by the service provider; and
actual PSE construction by the PSE provider on the base of Lupin service composition. A
prototype has been implemented to demonstrate the feasibility of Lupin architecture. This
proof-of-concept system is supported by the combination of Web service technologies such
as SOAP [10], WSDL [11], UDDI [12], as well as the mathematical protocol MathML [9],
Computer Algebra Systems (CASs) [6], interactive math [18] and the relevant XML technol-
ogy. Various discussions are carried out according to the implementation and the improved
proposals are considered for future research.

2 Lupin overview

2.1 basic idea

The initial thoughts of Lupin focus on the two key elements that a PSE contains: 1) the user
interface and 2) packages of computing kernels - the computing engines, plotting applications,
databases and other programs. In the Web-centric environment, it is expected that one kernel
can contribute to a number of user interfaces that designed for different purpose and different
end users - computer modeling for physical phenomena, numerical simulation, engineering
computation, mathematical education and so on. In another word, depending on target class
of problems, the process of a PSE construction is essentially the process of choosing and
locating the certain computation kernels and binding them in an appropriate flow. Thus,
via a carefully designed and implemented user interface created by the PSE provider, the
end users can get their desired computation to be well defined and solved transparently over
the Web; different user interfaces and its bound computing kernels provide different PSEs
for different class of computations. Based on this conception, the following elements are
considered to play the critical roles under Lupin’s framework.

• the computing kernels, that are called Lupin services, are Internet accessible.

• a mechanism of Lupin services discovery, which allows those geographically distributed
Lupin services to be correctly selected and located.

Figure 1: Lupin’s stack

• a mechanism of Lupin service binding to enable the actual integration and interoperation.

• a mechanism of PSE composition due to a certain definition of selected Lupin services
and the corresponding interface generation for the end user.

Figure 1 shows the conceptual stack to illustrate the layered relation of the above elements.
It figures out that the Lupin service provider, the PSE provider, and the end user are three
key entities in Lupin’s framework and sit at different layer respectively - that means all the
operations such as Lupin service developing and maintaining, PSE creation and generation
as well as the use of PSE can be performed independently, in every time, at everywhere over
the Internet.

2.2 Lupin framework and its usage diagram

Based on the above conception, Lupin is designed to have the following architecture to facil-
itate Web-based PSEs construction (Figure 2). It consists of 3 main blocks, which are called
the Lupin service generation mechanism, the Lupin discovery mechanism and the PSE com-
position mechanism respectively. In a typical scenario, Lupin service generation mechanism
is considered to supply the service providers various capabilities to develop and deploy the
actual Lupin services that are Internet accessible; and the other two parts are expected to
facilitate the PSE providers to easily create their PSEs by enabling the appropriate Lupin
services discovery and integration, as well as the PSEs user interface generation.

2.2.1 Lupin service generation mechanism

Developed for particular purposes, Lupin services are separately owned and located and are
available to participate in other systems via different interfaces. Lupin service generation
mechanism aims to achieve the easy development of Lupin service as a back-end, and its
deployment to be Internet accessible. Some contributions can be listed to support the dis-
tributed approaches either in encoding protocol level [1, 6], and program interface level [5, 4].
As an evolving standard protocol on the Web, SOAP [10] is garnering a great deal of interest
from industry to address the XML messaging-based distributed computation.

Figure 2: Lupin’s conceptual architecture

2.2.2 Lupin service discovery mechanism

Lupin service discovery mechanism aims to organize Lupin services into a coherent collection
to enable discovery. It should be based on the semantic match between a declarative descrip-
tion of the Lupin service being sought, and a description of the Lupin service being offered.
In Lupin, the discovery mechanism is regarded to be addressed by the recommender system
[3]. Generally, the recommender system contains an agent accessible registry, which holds
Lupin service descriptions registered by service provider. It accepts the query information
from the PSE provider via interfaced service browser, searches for the satisfied one according
to the existing service description, and returns the searching result together with the binding
information to the PSE provider for PSE composition. In the Web environment, we believe
that XML-based meta-data technologies can provide us informative approaches towards the
mathematical service description and discovery.

2.2.3 PSE composition mechanism

In the conceptual architecture of Lupin, the PSE provider contacts the recommender system
via Lupin service browser to seek any Lupin services that contribute to the certain compu-
tation. After gathering all necessary Lupin services, the next step should be how to organize
them to work with each other interactively in an appropriate way. PSE composition mech-
anism is motivated to address this goal. In a typical scenario, the PSE builder obtains the
selected Lupin services as the “raw materials” and organizes them according to the certain
application, together with other technologies that support math on the web. Then, user
interface (which can be a standalone or the regular Web browser compliant) will be defined
and generated as the client site front-end.

We note that, from the perspective of PSE, it is not sufficient to have the only three parts
to define a significant PSE infrastructure. Our objective is to extract the most critical 3
entities from the framework of PSE to establish the backbone, and to demonstrate whether
it makes sense to shift PSE conception to the Web environment, using the XML-based tech-
nology to support the mathematical PSE construction.

3 Implementation

3.1 Available technologies

We focus on the following available approaches that can potentially benefit Lupin’s architec-
ture.

The topic about math on the web has been well researched and developed in recent years.
Among many others, for example, MathML [9] and OpenMath [8] are two fast-growing pro-
tocols that address the viewing of mathematical contents on the Web, as well as allowing
the rich math object to be exchanged between programs. Moreover, the list of MathML-
/OpenMath-compliant software is also increasing fast, such as WebEQ and Mathplayer [18]
can support interactive math operations based on MathML; and series of Phrasebooks im-
plement the conversion between OpenMath objects and software applications.

The term Web service is an emerging e-business framework that can interface a collection
of operations that are network-accessible through XML messaging [7]. There are 3 main
entities in Web service architecture: the service provider, who hosts the actual service that is
accessible over the Web; the service requestor, an application that requires certain function
to be satisfied; and the service registry, a searchable mechanism for service description and
discovery; where service providers publish their service descriptions to, and service requestors
find service and obtain binding information from. Some XML-based standards such as Simple
Object Access Protocol (SOAP) [10], Web Service Description Language (WSDL) [11], and
Universal Description, Discovery and Integration (UDDI) [12] are being developed to address
its conceptual view.

3.2 Lupin implementation based on Web service protocols

Widely supported by the industry community, the Web services technology extends the ap-
plication of Web from pure html-based contents to Programming language-, programming
model-, and system software-neutral platform. Hence we are strongly motivated to expand its
characteristics from the e-business domain, to a more powerful approach of a new distributed
computing mechanism, say, mathematical Web service, to support Lupin implementation.
Based on this thought, our first attempt is to implement Lupin’s framework with series of
standard Web service protocols. That is, to exploit SOAP as the most fundamental under-
pinning for Web-based distributed computation, together with other technologies that deal
with math on the Web, to serve the PSE composition mechanism and generation mechanism;
to adopt WSDL as the standard protocol for Lupin service description; and consider to use
UDDI to support the implementation of Lupin discovery mechanism. Our later technical
reports will focus on the detailed discussion for each Lupin mechanism respectively. Figure 3
shows our first proposal to implement Lupin’s architecture with Web service standards.

4 Proof-of-concept system

A testing prototype has been built on the base of Lupin framework. Through a simple
example, highlighted works are listed to illustrate the whole lifecycle of Lupin application:
(1). the process of Lupin service creation/deployment by SOAP infrastructure in the Lupin
service generation mechanism; (2). service registration and discovery by UDDI registry in

Figure 3: Lupin’s implementation based on Web service protocols

Figure 4: Operation flow of Lupin application

the Lupin discovery mechanism; and (3). the actual service binding and user interface by
Lupin PSE runtime in the PSE composition mechanism.

The experimental testbed has been built in Java. On the consideration of Web server,
the Apache Tomcat is adopted. Tomcat is a highly configurable server that supports Java
servlets, which can well handle the Lupin service that one wants to make accessible. Among
those available approaches that enable SOAP application, we chose also an Apache package
called AXIS [16]. Apache Tomcat Web server and AXIS constructed the backbone of our
experimental environment. Figure 4 is the whole diagram of the testing system.

4.1 Service development, deployment and registration

All the Lupin services in the system are considered to talk MathML as the default mathemat-
ical protocol. As a simple example, Lupin service exeAsirFactorService is implemented
by a Java class FactorService. It accepts MathML-based polynomial as the input, invokes
Risa/Asir [6], a local Computer Algebra System, to compute the factorization of the poly-
nomial, and returns the computing answer with MathML expression. The format conversion
between MathML and the native mathematical expression is addressed by our XSL library
that can be processed by Java parser. With AXIS, it can be deployed online by using a wsdd

(Web service deployment descriptor) file which specifies certain properties of the service:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="exeAsirFactorService" provider="java:RPC">
<parameter name="className" value="webservice.asir.FactorService"/>
<parameter name="allowedMethods" value="exe"/>

</service>
</deployment>

After being deployed by AXIS, the service can be located from the Web by the actual
endpoint. In our case, the service is available at:
http://localhost:8001/axis/services/exeAsirFactorService.

The corresponding WSDL file exeAsirFactorService.wsdl can also be generated by the
attached tool Java2wsdl provided by the AXIS SOAP infrastructure, or just could be simply
retrieved by going to:
http://localhost:8001/axis/services/exeAsirFactorService?wsdl.
The WSDL file, which enables the dynamic interface generation to invoke the deployed Lupin
service, plays a critical role in Lupin implementation. To make the WSDL file to be search-
able, it should be firstly registered to Lupin’s recommender system, which is here performed
by a UDDI service registry. In our experiment, the operation is handled via systinet’s WASP
UDDI registry [13].

4.2 Service discovery

Under Lupin’s architecture, The operation of service-searching is done by PSE provider
through the recommender system that enables mathematical Web service discovery. Consid-
ering the objective of UDDI, our testing system adopted the “pure UDDI registry” provided
by systinet’s WASP UDDI [13] to demonstrate that whether it makes sense working as the
discovery mechanism of mathematical services. WASP UDDI supplies a Web interface that
allows the access to the UDDI-specified registry. Both of service registration and searching
operations are supported. The current UDDI specification can only support a very simply
query to achieve the service searching, e.g. service name, business name and some default
standard business taxonomy. There is still not default mathematical taxonomy system defined
in UDDI that accommodates the mathematical application discovery, hence a mathemati-
cal taxonomy needs to be added. In our experiment, a temporary mathematical taxonomy
system based on GAMS [17] is added due to the extended functionality of WASP UDDI.
The result shows that the successful discovery can be achieved by querying the registered
service name exeAsirFactorService, as well as its corresponding classification defined in the
mathematical taxonomy.

4.3 Service binding and PSE composition

Another important issue of our experiment is how to achieve the actual Lupin service binding
when we obtained the WSDL file from UDDI registry; and how to construct the PSE by gen-
erating the user interface binding with the distributed Lupin services. We are now developing
the Lupin PSE builder, a Java toolkit in Lupin’s framework that completely support the Web
service-based PSE composition. The detail discussion will appear in our related report. Here

we only focus on the experiment, which is involved in 2 parts: the PSE interface generation
and the Lupin service binding. The former one aims at the friendly user interface that made
by the PSE provider to address the easy-to-use PSE frond-end; while the later one targets
the programmed integration of the selected Lupin services.

The operation of service invocation is carried out by Lupin Service Binding API, which
is a part of Lupin PSE runtime and currently implemented in Java. Based on AXIS and
DOM parser, it can dynamically generate the interface for SOAP remote call when given
the URL of WSDL file of certain Lupin service, e.g., the exeAsirFactorService.wsdl. In
this implementation, every Lupin service is a SOAP server and is responsible for processing
the request message and formulating a response. The response message is received by the
networking infrastructure on the service requestor’ node and can be converted from XML
message into certain object that fits the client.

We’ve also made an effort to show that the PSE provider could be supported by the
existing interactive math approaches, to build the application-oriented PSE user interface.
Achievements of many aspects of “math on the web” are providing the significant solutions.
As an example, WebEQ [18] interactive math technology based on Java applets that enables
MathML processing has been used. With it, the exeAsirFactorService can be invoked by
a series of user-friendly operations without necessity to care about what kind of computing
engines are working, nor necessity to learn syntax rule of certain CASs. The SOAP-based
messages transmitted during the distributed computation are shown as follows:
Request message:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<exe soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<cmml xsi:type="xsd:string">
<math><apply><minus/><apply><power/><ci>x</ci><cn>8</cn></apply><apply><power/>
<ci>y</ci><cn>8</cn></apply></apply></math>

</cmml>
</exe>

</soapenv:Body>
</soapenv:Envelope>

Response message:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>
<exeResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<exeReturn xsi:type="xsd:string">
<math><apply><times/><apply><times/><apply><times/><apply><times/><cn type="integer">
1</cn><apply><plus/><apply><power/><apply><ci>x</ci></apply><cn type="integer">2</cn>
</apply><apply><power/><apply><ci>y</ci></apply><cn type="integer">2</cn></apply>
</apply></apply><apply><plus/><apply><power/><apply><ci>x</ci></apply><cn type=
"integer">4</cn></apply><apply><power/><apply><ci>y</ci></apply><cn type="integer">
4</cn></apply></apply></apply><apply><minus/><apply><ci>x</ci></apply><apply><ci>y

Figure 5: Interface generation and input/output from Lupin service.

</ci></apply></apply></apply><apply><plus/><apply><ci>x</ci></apply><apply><ci>y</ci>
</apply></apply></apply></math>

</exeReturn>
</exeResponse>

</soapenv:Body>
</soapenv:Envelope>

5 Conclusions and Future works

We have discussed the design and architecture of Lupin, which aims to build the signifi-
cant Web-based PSE framework in this paper. Enabling the independent development, de-
ployment, discovery and invocation of Internet accessible PSE components (Lupin services),
Lupin will empower the PSE providers by eliminating many technical difficulties and exploit-
ing the existing computing resources on their PSE construction. According to the design, an
implementation based on Web service protocols (SOAP, WSDL, UDDI, etc.) and relevant
XML compliant technologies has been considered to address the whole architecture, and a
prototype has also been proposed to check out the feasibility.

The proof-of-concept system shows that the process of Lupin service invocation can be
sufficiently achieved by WSDL-based interface generation and SOAP-based data exchange.
However, the UDDI registry does not completely meet our needs of Lupin service discovery,
because of UDDI’s poor description facility on mathematical issues. From our perspective,
the process of discovery should be carried out by certain service descriptions: one is the
service declaration that offered by the service provider, while another is the query that a
PSE provider seeks for. Current specification of UDDI includes very little information to
describe service, limiting itself to the service name, the business name and some standard
taxonomy. Even though UDDI allows services to refer to a set of attributes, called “Tmodel”
(for example, in our experiment, we referred Tmodel to the Lupin service’s WSDL file), but
still lacks mechanism to support a flexible search. Due to this, a more informative, efficient
and semantic approach which enables the mathematical service discovery is needed. We are
now concentrating on a new Lupin service registry that is based on the emerging Mathemat-
ical Service Description Language (MSDL) [14] and the relevant semantic Web technologies

[15], to extend our work. We predicate that, based on the mathematical service-oriented
description and the semantic ontology markup approaches, Lupin discovery mechanism can
be promoted to address a more effective and dynamic service discovery.

Lupin is evolving, our immediate work is to complete the implementation of Lupin service
registry and its relevant service browser to facilitate current Lupin discovery mechanism. The
development of the Lupin PSE builder, a toolkit pack consists of Java-based LSB (Lupin
Service Binding) API as well as the Lupin service flowing markup and its generator is also
on-going to accommodate the PSE composition mechanism. Currently targeting at Web-
based distributed computation and interactive mathematic education, Lupin will grow up
together with the progress of Internet technology.

References

[1] Wang, P. S. Design and Protocol for Internet Accessible Mathematical Computation. In
Proc. ISSAC’99, ACM Press, pp.291-298, 1999.

[2] Lakshman, Y.N., Char, B. and Johnson, J. Software Components using Symbolic Com-
putation for Problem Solving Environments. In Proc. ISSAC’98, ACM press, pp.46-53

[3] Houstis, E., and Rice, J. R.: On the Future of Problem Solving Environments,
http://www.cs.purdue.edu/people/jrr, 2000.

[4] Liao, W., Lin, D. and Wang, P. S. OMEI: An Open Mathematical Engine Interface. In
Proc. ASCM’01, World Scientific Press, pp.82-91, 2001.

[5] JavaMath, http://javamath.sourceforge.net

[6] OpenXM(Open message eXchange protocol for Mathematics), http://www.openxm.org

[7] Kreger, H. Web Service Conceptual Architecture(WSCA 1.0). IBM software Group,
http://www-3.ibm.com/software/solutions/webservices, 2001.

[8] OpenMath, http://www.openmath.org

[9] Mathematical Markup Language, http://www.w3.org/Math

[10] SOAP(Simple Object Access Protocol), http://www.w3.org/TR/soap

[11] WSDL(Web Services Description Language), http://www.w3.org/TR/wsdl

[12] UDDI(Universal Description, Discovery and Integration), http://www.uddi.org

[13] Systinet WASP, http://www.systinet.com

[14] MSDL(Mathematical Service Description Language), http://monet.nag.co.uk

[15] DAML, http://www.daml.org

[16] AXIS(Apache eXtensible Interaction System), http://ws.apache.org/axis

[17] GAMS mathematical taxonomy, http://gams.nist.gov/Taxonomy.html

[18] WebEQ, http://www.dessci.com

[19] Li, K. Zhi, L.H. and Noda, M.-T. On the Construction of a PSE for GCD Computation.
In Proc. ASCM’01, World Scientific Press, pp.76-81, 2001.

