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Abstract  
The introduction of CAS and graphics calculators into mathematics teaching has had a strong 
impact on the way in which derivative and integral are introduced and developed. This paper 
provides a review of pen-and-paper and technology approaches identified in the research literature. 
They range from object-based to local, and all incorporate student investigation. We discuss their 
advantages and disadvantages with reference to research findings. 
 
Introduction 
This paper gives an overview of the approaches in which the derivative is introduced and looks at 
the analogous approaches for the integral. We distinguish local and global, object-based 
(functional) approaches with technology for both derivative and integral. The local approaches are 
to regard the derivative as a gradient or rate of change at a point and the integral as an area over a 
restricted domain, while an object-based approach would regard that differentiation and integration 
yield derivative and integral functions. There are a variety of ways in which these points of view 
can be implemented. We discuss these below in relation to , quoting the literature, 
which is more extensive for differentiation than for integration.  
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Local approaches 
Local approaches to the derivative include using graphs to make sense of the limiting process that 
defines the gradient of a function at a point, or they involve calculating average rates of change and 
inferring instantaneous rates of change. In the recent literature the use of graphical and numerical 
features on a graphics calculator or a CAS are discussed for the illustration of the concept 
“derivative at a point”. We will consider four approaches. The first exploits zooming and involves 
inferring that a function can be approximated at any point by a straight line whose slope is the 
derivative at that point. The second and third involve the use of secant lines to determine the 
tangent line at the point of interest and hence the gradient at the point. The fourth is a rate of change 
approach. We finish this section of the paper with analogous approaches to integration. 
 
Local linearity  
Kawski (1997) recommends introducing the derivative at a point through zooming in on the graph 
of a function. Students choose a function for the class to work with, points are assigned to students, 
and they zoom in repeatedly, using the same magnification factor in each direction. Comparison of 
the resulting screen displays leads to the realisation that everyone has ended up with the display of a 
straight line, which can be characterised by its gradient (see Figure 1). Kawski regards the emphasis 
on local linearity as the key advantage of the zooming method. However, the fact that the gradient 
is generally point dependent, so that the gradient at nearby points could be quite different, is not 

mailto:u.mueller@ecu.edu.au
mailto:p.forster@ecu.edu.au


evident from the graphical display. This problem can be partially addressed by having students 
estimate the gradient for their point or access the gradient on the technology they are using.  
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Figure 1. Repeated zooming in, exemplified for  near t=1, magnification 8×8 ttf sin)( =

 
Secant lines 
Another approach to the derivative is to infer the tangent line to the graph at a point on the basis of 
inspection of secant lines constructed through the point, all with different gradients (Lagrange, 
1999). We consider obtaining the tangent line to the graph of  at (1, sin 1) by graphing 
the equation  with different values of m. The method is illustrated in Figure 2. 
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Figure 2. Graphs of  and  for (a) m = 0.5, 1, 2 (b) 0.5, cos(1), 0.6 ttf sin)( = 1sin)1( +−= tmy

 
Lagrange recommends the tangent approach because students generally have an appreciation of 
tangential behaviour. However, usually no line appears tangential partly because of the screen 
resolution of calculator and computer technologies, and visual determination of the appropriate line 
becomes difficult (see Figure 2(b)). To overcome the problems associated with a purely visual 
determination, Lagrange describes how the estimates for m can be checked on a CAS by computing 
the differences between the y value for each line and the value of the given function, at a point near 
the chosen tangency point. To us, a disadvantage is the mathematics of the check is complex.  
 
A second secant line approach is to define the derivative at  as the limiting value as 

 of the gradient through the points  and (  yielding the 

definition:
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. Figures 3(a) and 3(b) show diagrams for negative and 

positive h respectively. However, in Kawski's (1997) view, the secant line can be unconvincing as 
an approximation for the local linearisation of the curve and the dynamic process of taking a limit is 
not captured well by the static secant images. Other problems are that often line segments, not 
secant lines are used in illustrations of the approach, and the segments disappear in the limit (ibid).  
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Figure 3. The function , secant lines through  and ( , and the 

tangent line shown in bold. 
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Rate of change 
Speiser and Walter (1994) describe a rate of change approach where students generated (time, 
distance) data from a sequence of photo frames for a cat running in a straight line, then calculated 
average speed values and deduced instantaneous speed for some of the frames. Hence, the 
derivative was introduced as an instantaneous rate of change. A graphical analysis of the data and 
interpretation of the results in relation to the context highlighted that instantaneous rates cannot 
always be reliably predicted from discrete values and this may be beneficial to understanding. 
Others (e.g., Lapp & Cyrus, 2000) describe similar activities where students generated data with 
CBL (computer based lab) devices. Benefit seemed to lie in the simultaneous collection and plotting 
of the data, so that students could see the effect on the slope of the graph at the same time as they 
experienced changes in the speed of the object/person whose motion was being logged.  
 
Integration 
The secant approach to the derivative, where the gradient through  and (  is 
considered, has a direct counterpart in integration, in that limiting values are considered. The 
method is to treat the definite integral as the area of the region enclosed by the graph of a function 
and the x axis, and to construct left, then right rectangles over a given interval and sum their areas. 
See Figure 4 for the function  on [ .  
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Figure 4. (a) Left and (b) right rectangles for estimating  ∫
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Then, rectangles with heights given by the function values at arbitrary points in the subintervals 
(e.g., midpoints) of the subintervals are constructed and the areas are summed to show visually and 
numerically that the result is a better approximation for the area under the curve (Figure 5a). Next, 
the method is extended to show that an increase in the number of subintervals improves the area 
estimate. This can be done using circumscribed and inscribed rectangles, a method which captures 



the essence of convergence to a limiting value from above and below, or the midpoint rule can be 
applied (Figures 5b). In the case when only graphics calculators are available and the rectangles 
cannot be shown, an explanation of the method together with a program to calculate the sum of the 
rectangular areas for different numbers of subdivisions can be used (Stick, 1997). 
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Figure 5. Approximating  using the midpoint rule with (a) 5 and (b) 40 subintervals. ∫
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Another approach is to introduce the integral and derivative together. Schnepp and Nemirovsky 
(2001) describe opening activities for introductory calculus which involve considering numerical 
data or a symbolic function rule for the rate at which some quantity changes. The task is to 
determine how much of a changing quantity has accumulated over various time intervals. One 
possible implementation is a computer package that allows students to draw the rate graphs and the 
computer communicates with a mechanical device that moves according to the graph. Students are 
led to considering accumulation in terms of the area of rectangles drawn under the rate graphs, as in 
Figure 4a, and to sketching the accumulation at each point in an interval, for instance the 
accumulation at t  in Figure 4a, which would yield rough approximations 
for , , ,  and so on. The purpose is to enable 
students to recognize the link between integration (accumulation) and differentiation; and, more 
specifically, that they develop numerical methods for approximating integrals, relate these to area 
under a graph, and begin to discuss instantaneous rate.  
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Object-based approaches 
Yerushalmy and Schwartz (1999) suggest an object-based approach to the derivative where students 
plot the difference quotient  for decreasing values of h, to obtain a global 
view of estimates to the derivative function (see Figure 6a). The structure of the graph can be 
described in terms of the gradients of the secants to the graph of f.  
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Figure 6. The functions defined by the difference quotients (a) (sin( , (b) 

 and (c)  for , 0.5, 0.25, 0.125, 0.0001. 
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They suggest also to use , and  (Figure 6 
(b) and (c)). In their view, the three approaches may allow a deeper understanding of convergence. 
Tables of values for all three functions for small increments h would also illustrate the convergence 
and would most likely enhance understanding if they were used in conjunction with the graphs. 
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Speiser and Walter (1994) suggest plotting each component of the difference quotient in succession, 
to highlight the effect of the numerator and denominator on the structure of the difference quotient 
curve. They describe the activity in relation to their rate of change approach (see above). For 

, the quotient (sin(  is obtained, and then each component is graphed 
for a small increment h. So, if , then , , , and 

 are graphed in succession (see Figure 7). The graph of is 
the graph of  shifted to the left, and the difference in height for any given t is the numerator 

 (see Figure 7(a)). The structure of reflects the structure of 
the gap between  and  (Figure 7(b)).  The graph of 

 is the graph of  rescaled by a factor of 1/0.5 
(i.e.,1 ) (see Figure 7(c)). Thus, the method stresses the role of the functional relationship 

 in the computation of the derivative, and the rescaling effect of h (the time increment).  
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Figure 7. (a)  and , (b)  and  with the difference function 

, (c) the difference function together with the difference quotient.  
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The method is repeated for different increments, for example h =1, 0.25, 0.125 and 0.0001 and the 
function in the limit, that is, the derivative function may be deduced. Figure 8(a) shows the 
result over  and Figure 8 (b) shows the screen after zooming out. 
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Figure 8. The function defined by the difference quotient  for  
(leftmost graph), 0.5, 0.25, 0.125, 0.0001 over (a) t and (b) t   
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The analogous approach for integration takes as its starting point the approximation of the signed 
area of the region bounded by the graph of the function, the x-axis, the line  and the line . 
The midpoint rule will be used for the approximation and a fixed number n of subintervals. In the 

case of , the definite integral  is approximated by 
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The approach is illustrated for  with n = 5 and for different values of t in Figure 9.  ttf sin)( =
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Figure 9.  for (a) , (b)  and (c) t  )(5 tg π=t π2=t π6=

 
The graphs for the resulting values of  for are shown in Figure 10, for the 
interval  (Figure 10(a)) and the interval  (Figure 10(b)). For small values 
of t there is little difference between the graphs, however, as the distance from the lower limit of 
integration increases, the functions  based on small numbers of subintervals exhibit large 
oscillations. These diminish in magnitude as the number of subintervals increases. In the limit, as 

, the graph of =  is obtained. 
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Figure 10. The functions  for (a) t  and (b) t . 4020105  and ,, gggg ]3,0[ π∈ ]16,16[ ππ−∈

 
In order to account for the fact that the integral of a function is only determined up to a constant an 

investigation of the function  and its approximations for different initial points a could 

be carried out (see Figure 11). 
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The use of different lower limits of integration can lead to the recognition that there is a family of 
functions associated with each integrand. However, the use of the definite integral to exhibit this 
feature will not lead to the full family of functions.Another limitation of the method is that as the 
width of the interval of integration increases, a fixed number of intervals leads to wider and wider 
subintervals which introduces convergence problems (see Figure 10(b)). This could be remedied by 



using a fixed mesh-size instead, however, it then becomes impossible to evaluate the function 

 for arbitrary values of t ∫
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Figure 11. Approximations for  using the midpoint rule with 100 subintervals and 

 (top to bottom graph) 
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Another object-based approach is to treat integration as the reverse operation to differentiation. In 
other words, treat the function whose integral is to be found as a derivative. So, for the integral 

 it is recognised that . A graphical approach uses slope fields, 
borrowed from differential equations. The slopes  along the integral function  are 
indicated by slopes of line segments. Once an initial value is chosen, the graph of the integral is 
obtained by tracing the function using the trend of the segments. We illustrate this approach for 

 with initial conditions given by F(0)=1, and F(0)=-3 (see Figure 12). A strength of this 
approach is to emphasize the fact that for any given integrable function there is an entire family of 
antiderivatives, all having the same shape, but parallel-translated along the y-axis. In other words, 
the calculation of  requires the inclusion of a constant of integration. A problem with the 
visual approach is the line segments are usually placed so their centres are spaced evenly on points 
on a grid, which could be confusing for it is incorrect to draw a curve by joining the segments.  
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Figure 12. Slopefield for  together with antiderivative for (a) F(0)=1, and (b)  F(0)=-3 xxf sin)( =
 
Schnepp and Nemirovsky's (2001) accumulation approach to integration, given functions or data for 
rate (see above), can also be used for exploring indefinite integrals. They describe how students 
realized that, while a given rate function allows the calculation of accumulation in a given time 



interval (that is calculation of definite integrals), a constant needs to be added for total accumulation 
at an arbitary time t. 
 
Advantages, Shortcomings and Extensions 
The main advantages that technology offers are computational power and consequent quick access 
to graphs, and hence the display of the integration and differentiation processes. Problems and 
properties associated with each of the approaches have been described above and would need to be 
taken into account in teaching. In brief, these are poor resolution in the graphical display, which 
may be confusing in relation to the derivative at a point, and computation difficulties with object-
based approaches to integration. The problems with object-based integration perhaps explain why 
the approaches are not referred to much in the literature on teaching and learning. Another facet of 
many of the approaches is the absence of real-life contexts, although some methods are embedded 
in contexts. It is relevant that learning can be more meaningful if contextualised.  
 
The different approaches variously lend themselves to the exploration of differentiation and 
integration for particular functions. For instance: 
• the difference quotient  yields an easily recognizable function if 

is a sine or cosine function but for higher order polynomial functions the resulting 
derivative function is not so easily identifiable.  
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• provided the position of a discontinuity is known, Kawski's (1997) zooming approach on a 
CAS could highlight that the derivative at a point does not exist at a point discontinuity--the 
graph no longer appears linear near the discontinuity. See Figure 13(a) for the function 

 at . However, the behaviour may not be apparent on a graphics 
calculator because of the limited resolution of the calculator screen. Another problem is the 
graph may appear the same on a CAS package once the function has been redefined to remove 
the discontinuity--in that case, local linearity should be seen but is not. 
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• the tangent approach advocated by Lagrange (1999) would fail to highlight the non-existence 
of the derivative of  at   unless students realized it was inappropriate 
to draw lines through . However, if the function  is redefined to 
have a value of –1 at  Lagrange’s approach is viable (see Figure 13(b)). 
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Figure 13: (a) Kawski’s approach for  and (b) Lagrange’s approach for 
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• the non-existence of an integral, such as ∫ , can be illustrated graphically by 

considering upper and lower sums for a sequence of integrals ,  and using 

different numbers of subintervals. The sum can be explored visually via the rectangles and 
numerically using tables. As k increases, the upper sum grows without bound, what-ever 
number of subdivisions is used.  
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The approaches described above can also be used for deducing rules for differentiation and 
integration for different classes of functions and properties that link functions, derivatives and 
integrals. If the purpose is to deduce differentiation rules and the graph of the difference quotient is 
used, the value for h would be kept constant and small (e.g., h = 0.001), while for integration rules, 
if a limiting sum of areas of rectangles is used, the value of n would typically be kept large and 
constant. Some other approaches to inference are: 
 (a) Derivative function and integral function values can be produced on calculators using 

commands for the derivative (or slope) and integral respectively, and the algebraic expressions 
inferred, then, differentiation and integration rules for classes of functions deduced. Otherwise, 
the algebraic expressions for derivatives and integrals can be evaluated on CAS calculators and 
the rules deduced. Lagrange (1999) observes that students are likely to be more reflective than 
in cases when the teacher gives the rules. Lumb, Monaghan and Mulligan (2000) report some 
students lost interest with such approaches, while they stimulated the interest of others.  

(b)  Graphs of functions and derivative functions, or functions and integral functions can be plotted 
on the same screen and the properties that link them inferred, from the graph or associated 
tables of values.  

 
Stroup's (2002) findings in relation to a qualitative approach to calculus concepts are relevant to the 
discussion. He notes that traditionally analysis starts with linear functions, for which rate of change 
(i.e, the derivative) is constant. He observes that students have difficulty with the properties 
associated with the linear functions, and have greater success in understanding the fundamental 
properties of derivatives and integrals when starting with situations where the rate varies. 
 
We also note that building in requirements for students to make links between representations in 
investigative/instructional activities can result in students being able to coordinate the use of 
different representations effectively in subsequent problem solving (Porzio, 1999). There is scope to 
prescribe that connections be made between algebraic expressions, table of values and graphs in 
many of the above introductions to the derivative. Otherwise students may access the different 
representations spontaneously, which Pierce and Stacey (2001) observed in a CAS environment, 
when students were predicting rules from algebraic expressions. 
 
Concluding discussion 
Lagrange’s approach to the introduction of the derivative, and the secant line approach are 
adaptations of traditional approaches that originally arose in a paper and pencil setting. Both easily 
translate into a technology setting and could be enhanced if the diagrams are programmed 
dynamically. In our view, the approach using the secant lines is more powerful, as it better 
encapsulates the key components of the definition of the derivative.  
 
Methods such as zooming and treating the different quotient as a function in its own right are 
approaches that cannot be implemented without the use of technology. With zooming we note that, 



while it emphasizes local linearity, the nonconstancy of the derivative is lost even if different points 
are used in the exploration of the concept. The difference quotient function allows the move from a 
local point of view to a global one, namely looking at the function as a whole, and so might allow a 
move from a purely procedural point of view to deeper, conceptual understanding. Approaches that 
use CAS functions for the prediction of integration and differentiation rules do not address 
fundamental aspects of the concepts so it would be best to implement them after the methods 
identified above. The availability of CBL devices and specialised computer applications, such as the 
one used by Nemirovsky and Schnepp (2001) allow new approaches to the derivative and integral 
concepts, where an advantage is inference is grounded in students' real-life experience. 
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