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   Abstract 

Threshold functions are Boolean functions that model neurons, processing units of an artificial 
neural network. These functions can be represented geometrically as a unit hypercube in which 
each vertex is labeled either by 1 or 0. These representations can be simplified into graphs 
without losing the relationship between minterms and vertices. A graph labeling can be used to 
store threshold functions as well as to keep the relation between minterms and vertices. There are 
119 different graphs that represent all of the 94,572 threshold functions of five variables. This 
paper presents graphs of threshold functions and some patterns followed by these graphs for small 
number of minterms and variables and some open problems.  

 
 
1. Introduction  
 
Threshold functions are restricted class of Boolean functions that model neurons. Each neuron can 
be regarded as a processing unit of an artificial neural network.  A formal neuron consists of n input 
lines, each of them having a synaptic weight, a threshold, and a single output line. The output lines 
of neurons can be connected to some other neurons to assemble a neural network. At random time, 
each input line may or may not carry signal. Signal will be present at the output line if and only if 
the weighted sum of the input lines is equal to or greater than the threshold.  
 
Definition: 
A Boolean function f of n variables X = ( ,, 21 xx …, nx ) is a threshold function if and only if there 
exists a set of real numbers nwww ,...,, 21 , called (input) weights, and a real number θ , called the 
threshold, such that the following conditions are satisfied: 
 

f(X) = 1  if ≥∑
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                                                                                                                                                          (1) 
f(X) = 0  otherwise. 

 
In this case, ];,...,,[ 21 θnwww  is a structure of f.  



  

For example, f = 21xx  ( 21ANDxx ) and the (logical) summation g = 21 xx +  ( 21ORxx ) are threshold 

functions, but 2121 xxxxh +=  ( 21XORxx ) is not.  
 
Each Boolean function f can be represented uniquely in the minterm expansion form [9]. They can 
also be represented geometrically. Even though the geometrical representation is a convenient way 
to represent threshold functions, it is difficult to illustrate when the number of variables is more 
than three. These representations can be simplified into graphs, the projection of the geometrical 
representation into 2-dimensional space, except for f = 0. Every threshold function can be 
represented uniquely by a graph. However, a graph can represent several different threshold 
functions. As a result, if we are given a graph, we may not be able to decide which function it 
represents. In order to maintain the relationship between minterms and vertices, as well as the 
relationship between functions and their graphs, a certain graph labeling is defined on the vertices 
of the graphs.  
 
Graphs of threshold functions of up to five variables follow certain patterns. There is a possibility 
that these patterns can be generalized into theorems. This paper presents those patterns, conjectures, 
and facts known for small graphs of threshold functions. We are also interested in exploring the 
consequences, in terms of graphs, derived from the preserving and closure operations on threshold 
functions, operations performed on threshold functions that produce other threshold functions. 
Open problems for future research topics are given in the last part. 
 
 
1. Threshold Function Representations 

 
2.1. Geometrical Interpretation of Threshold Functions  
The representation of Boolean function chosen in this paper is the minterm expansion form, 
abbreviated mef, because it is strongly related to the geometrical representations of functions. The 
minterm expansion form is a disjunction of different minterms. A minterm is a conjunction of 
different literals, variables or their complements, in which each variable is involved exactly once 
For instance, the mef of 321 xxxf +=  is 321321321321321321 xxxxxxxxxxxxxxxxxxf +++++= . 
Each Boolean function can be expressed uniquely in the mef.  
 
If the number of variables is n then there are 2n minterms. Minterms appearing in the mef of f are 
called true minterms, otherwise are called false minterms. A Boolean function of n variables having 
m minterms is called an (n, m) Boolean-function.  
 
Let m = **

2
*
1 ... nxxx  be a minterm, v = ( **

2
*
1 ,...,, naaa ) be a vector or vertex, b = **

2
*
1 ... naaa  be a binary 

number, and A = { **
22

*
11 ,..,, nn axaxax === } be an assignment with the following relation:  

 
1* =ia  if ii xx =* , 

                                                                                                                                                           (2) 
0* =ia  if ii xx =*  

 



  

where ni ≤≤1 . Under such a relation, the minterms (or their corresponding vectors) are in one-to-
one correspondence to the assignments. If m is a true minterm of f then v is called a true vector or 
vertex. Otherwise, it is called a false vector or vertex of f.  
 
Let m be a minterm of an (n, k) Boolean-function f. The value of m under the corresponding 
assignment A is 1; hence, the value of f is also 1. Conversely, if f has a value 1 under an assignment 
A, one of its minterms has the value 1 under the same assignment. In other words, the true minterms 
are in one-to-one correspondence to the rows of the truth table for f in which f = 1. Furthermore, the 
false minterms are in one-to-one relationship to such rows in which f = 0. Vector v, that relates m to 
A, is a vertex of a unit n-cube.  Therefore, f can be explained in terms of geometry as a unit n-cube 
where we label the true vertices by 1 and the false vertices by 0. Henceforth, such an n-cube is 
called the geometrical representation of f. If f is given in the mef, its geometrical representation can 
be obtained in a straightforward manner and conversely.  
 
2.2. Graphs of Threshold Functions  
The geometrical representations are natural and convenient way to represent Boolean functions. 
However, if n ≥ 4 it is difficult to illustrate. An alternative way of representing threshold func tions 
is by using graphs [10]. These graphs are constructed by projecting the true vertices of the 
geometrical representation of f together with their adjacency edges into 2-dimensional space.  
 
Given an (n, k) Boolean-function f and its geometrical representation. The graph representation Gf 
of f is defined as follows: V(Gf ) = {v1, v2, …,  vk} denotes the set of Gf ‘s vertices, E(Gf ) denotes 
the set of Gf ’s edges, and vi is adjacent to vj in Gf, written as (vi, vj)∈E(Gf ), if and only if vi and vj 
are connected by an edge of the unit n-cube, for 1 kji ≤≤ , . It means that bi and bj differ in exactly 
one digit; mi and mj differ in exactly one literal. For example, the geometrical and graph 
representations of f = 321321321321 xxxxxxxxxxxx +++  are the following.  
                  
                            0                   1  (1, 1, 1) 
                      0                    1  (1, 0, 1)  
 
                                                1  (1, 1, 0) 
                                             
                     1                   0 
 
      Figure 1: The Geometrical Representation of f          Figure 2: The Graph Representation of f   
                 
A graph can represent more than one Boolean functions; a graph may not represent any Boolean 
function at all. Graphs mentioned in this paper are graphs of Boolean functions. If a Boolean 
function is a threshold function, then the graph representing it is called the graph of threshold 
function. Graphs of threshold functions are restrictive graphs of Boolean functions. 
 
Recall the definition of threshold function and the inequality (1). The following equation 
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defines an n-hyperplane. Thus, a Boolean function is a threshold function if and only if there exists 
an n-hyperplane that separates the true vertices from the false vertices such that the true vertices lie 
in one side of the n-hyperplane and the false vertices are on the other side. It is clear that a graph 
consisting of two or more components is not a graph of threshold function because we need two or 
more n-hyperplanes to separate the true from the false vertices of the geometrical representation of 
f. Graphs representing threshold functions are connected graphs. If a graph of threshold function f 
contains an isolated vertex, it is the only vertex of the graph; f contains one minterm.   
 
 
2. Some Properties of Threshold Functions and Their Graphs 

 
3.1. Preserving Operations and Closure Transformations  
If f is a threshold function of n variables nxxx ,...,, 21 , then the (logical) addition and multiplication 
between f and a variable are also threshold functions. In other words,  

(1) pxf + ,  

(2) pfx  
are threshold functions, where 1 np ≤≤ +1 [8]. If 1+= np , the operations performed are between f  
and a new variable. Otherwise, the variables involved are those of f. 
 
If f is an (n, k) threshold-function, then 1++ nxf is an (n +1, 2k + 2n) threshold-function. The mef of 

1++ nxf  = )( 11 ++ + nn xxf + 1+ndx , where d is an (n-1)-variable threshold function having all 
possible minterms, represented as an (n-1)-cube. 
 
For 1+= np , condition (2) means that an (n, k) threshold function f can be regarded as an (n +1, k) 
threshold-function g. Considered geometrically, f is viewed in (n + 1)-dimensional space. Note that 
Gf  and Gg are isomorphic.  
 
Conversely, if all minterms of an n-variable threshold function g are identical in the i-th literal, then 
g can be reduced into an (n-1)-variable threshold function f such that ifxg =  (if variable ix  appears 

un-complemented) or ixfg =  (if ix appears complemented). 
 
Besides the closure transformations of threshold functions there are three preserving operations as 
follows. Given a threshold function f, the Boolean function f’ that can be obtained from f by one or 
more combinations of the following operations is a threshold function [8]:  

(1) Negation of one or more variables;  
(2) Permutation of two or more variables; and  
(3) Negation of the output function, f . 

 
The NP equivalent class of f, called NP-class of f, consists of functions that equivalent to f under 
operations (1) and (2). The graph representations of Boolean functions f and g are isomorphic if and  
only if they belong to the same  NP-class. Furthermore, if f is a threshold function then so is g. This 
principle can be used to characterize threshold functions. We need a list of graph representations of 
threshold functions as a table look up.  
 



  

Let f be an n-variable Boolean function, for 5≤n . If the graph of f is isomorphic to a graph of 
threshold function, then f is threshold function. Otherwise, f is not a threshold function. Some 
graphs of threshold functions of five variables are given in the next section. They can be used to 
determine whether or not a given Boolean function is a threshold function. If n > 5 and f is 
isomorphic to one of them, then f is a threshold function since we can reduce it into a five-variable 
threshold function by preserving operation (2). If n > 5 and f is not isomorphic to them, then we 
cannot decide whether or not it is a threshold function. It is a threshold function if it is isomorphic 
to graph representations of threshold functions of six or more variables that cannot be reduced to 
five-variables threshold functions. 
 
As given in the appendix of [10], there are 94,572 threshold functions of five variables grouped into 
119 NP-classes. Functions of the same NP-class are represented by the same graph. Thus, there are 
119 different graphs of threshold functions of five variables. Some of them are given in the next 
section. 
 
 
3.2. Some Graphs of Threshold Functions  
The graphs of threshold functions of up to five-variables follow certain patterns. Every n-variable 
Boolean function having 2n minterms, associated with f = 1, is a threshold function for 1≥n . Their 
geometrical representations form n-cubes, called cube graphs. The following are cube graphs for  
n = 1, 2, 3, 4. 
 
 
 
 
 
 
  
 
                      Q1                Q2                   Q3                                    Q4 

 
Figure 3: Graphs of (n, 2n) Threshold-Functions, for n = 1, 2, 3, 4 

 
Every (n, 1) Boolean-function f is a threshold function. One of its structures is [ ],;,...,, **

2
*
1 naaa n  

where 1* =ia  if ii xx =* 0* =ia  if ii xx =* . Hence, every (n, 2n – 1) Boolean-function f is a threshold 
function. It is the complement of (n, 1) threshold-function. It’s graph is obtained by removing one 
vertex, together with all edges incident to it, from the n-cube graph. For n = 2, the graph is given in 
Figure 2. In fact, it is the only graph of an (2, 3) threshold function; it is called 2-star.  
 
An s-star is a graph of (s +1) vertices and s edges in which one vertex is adjacent to the rest. Every 
s-star represents a threshold function having (s +1) minterms of at least s variables. If the number of 
variables is n, then the number n-stars is 2n; each of them represent an (n, n+1) threshold-function. 
The following are n-stars for n = 1, 2, 3, 4, 5. 
 
 
 



  

 
 
 
 
 
 
         *

1S                  *
2S                              *

3S                          *
4S                             *

5S  
 

Figure 4: s-Stars with s = 1, 2, 3, 4, 5 
 
 
Lemma : Every s-star, a graph with s vertices and (s -1) edges in which one vertex is adjacent to the 
other (s - 1) vertices, is a graph of threshold function. 
 
Proof. Consider nnnnn xxxxxxxxxxxxxxxxxxxxf ............,,...,... 321321321321321 +++++= . It is an 
(n, n+1) threshold-function. We will prove that one of its structures is [1, 1, 1, …, 1: n-1]. If the 
value of each input is equal to 1, then the weighted sum of the inputs is n which is greater than n-1. 
Therefore, the value of the output f is equal to 1. If the value of an input line is equal to 0 and the 
rest has the value equal to 1, then there is exactly one minterm has the value of 1 and hence f has the 
value of 1 also.  
 
Other s-stars can be obtained from f by one or more combinations of negation of one or more 
variables and permutation of two or more variables.  
                                                                        
 
Threshold functions having four minterms can be represented by either *

3S  or Q2. There are 
fourteen (3, 4) threshold-functions, eighty-eight (4, 4) threshold-functions, and four hundred (5, 4) 
threshold-functions.  
 
Threshold functions having five minterms can be represented by either *

4S  or the following graph. 
 
 
 
 
 

 
Figure 5: Graph of (n, 5) Threshold-Function 

  
There are twenty-four (3, 5) threshold-functions, two hundred and eight (4, 5) threshold-functions, 
and one thousand one hundred and twenty (5, 5) threshold-functions.  
 
There are three different graphs that represent (5, 6) threshold functions, as shown by the following 
figure.  
 
 
 



  

 
 
 
 
 
 
 

 
Figure 6: Graphs of (5, 6) Threshold-Functions 

 
They can represent some (n, 6) threshold-functions, for 6≥n ; other graphs of threshold functions 
of six or more variables having seven or more minterms remain an open problem. 
 
  
3. Graph Labeling to Store Threshold Functions 

 
Consider Figure 2. This graph represents, for examples, the following functions: 

 3213213211 xxxxxxxxxf ++= ,  

3213213212 xxxxxxxxxf ++= ,  

4321432143213 xxxxxxxxxxxxf ++= ,  
 
and many other functions. When we construct a graph from a geometrical representation of a 
function, the important relation between minterms and vertices is lost. We can restore the 
information by using a graph labeling, which is different from the labeling of the geometrical 
representations of functions.   
 
Let f be a Boolean function and m be a true minterm. The label for vertex vi, associated with m, is 
the decimal conversion of b, see relation (2). Such a labeling on f is an injective function from the 
set of vertices of f into the set of all possible labels D = {0, 1, 2, 3, …, 2n-1}. For instance, the graph 
in Fig. 2 has {5, 6, 7} as the set of labels. 
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Figure 7: Graph and its Labels 
 
Then, every threshold function can be stored as a set of binary numbers as well as a set of decimal 
numbers, its labels. For instance, f = 321321321 xxxxxxxxx ++  can be stored as {3, 5, 7}. If the set 
of f ’s labels is given, then the mef of f can be obtained and the graph can be reconstructed. First, we 
convert each label l into its binary representation b, then, find the minterm associated with b using 
the relation given in (2). The mef of f is the conjunction of all minterms of f.  
 



  

Graphs of (n,  2n) threshold-functions, cube graphs, for n = 1, 2, 3, 4 (see Figure 3) have the 
following labels: {0, 1}, {0, 1, 2, 3}, {0, 1, 2, 3, 4, 5, 6, 7}, and {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15}.  
 
Stars having up to six vertices (see Figure 4) have the sets of labels respectively {0, 1}, {0, 1, 2}, 
{0, 1, 2, 4}, {0, 1, 2, 4, 8}, {0, 1, 2, 4, 8, 16}. Therefore, Lemma 1 can be stated as follows.  
 
Corollary : Graphs with the set of labels {0, 20, 21, 22, 23, 24, …., 2n}  are graphs of threshold 
functions. 
 
Threshold functions of forms 

54321 xxxxx ,  
54321 xxxxx  + 54321 xxxxx ,  

54321 xxxxx  + 54321 xxxxx + 54321 xxxxx ,  

 54321 xxxxx  + 54321 xxxxx + 54321 xxxxx + 54321 xxxxx , …, 
 

54321 xxxxx  + 54321 xxxxx + 54321 xxxxx +…+ 54321 xxxxx   
have the following sets of labels respectively {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, …,{0, 1, 2, …, 31}.  

 
Conjecture : Functions given in sets of labels {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, {1, 2, 3, ..., p} are 
threshold functions. 
 
Suppose f is an n-variable threshold function and g = 1+nfx . As mentioned earlier, Gf and Gg are 
isomorphic. The labels of Gg can be obtained easily provided that the labels of Gf are known. If vi 

corresponds to m and has label l in Gf, then 2l + 1 is the label of vi’, associated with m 1+nx , in Gg. 
 
If f is an (n, k) threshold-function, negating a variable xi means changing xi to ix (or ix to xi) in every 
minterms of f. If vertex v, associated with minterm m, is changed to v’ then the label of v’ is the 
summation of the label of v and –2i-1 (or 2i-1) if xi appeared un-complemented (complemented) in m. 
If f is an (n, k) threshold-function, then f  is an (n, 2n-k) threshold-function. The labels of 

f
G can be 

obtained by removing the labels of Gf from D.  
 
 
5. Future Research Topics  
 
The number of graphs is much less than the number of threshold functions they represent. It is 
possible to generate n-variables threshold functions by generating their graphs. Based on our 
investigation, graphs of threshold functions satisfy certain patterns, it is possible that they can be 
generalized into theorems. The following suggestions for future research topic are related to 
generating more graphs and finding more properties of threshold functions. 
  

1. Finding a systematic method to generate all graphs of threshold functions having n 
variables, for 6≥n , by generating their graphs. 



  

2. Finding other patterns of graphs of threshold functions that lead to new theorems. 
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