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Abstract 
Equality plays an important role in our life, and we practise equational reasoning everyday.  
We can take advantage of our ability of reasoning with equalities and make explicit the 
equational reasoning in programming and symbolic computation. Based on this observation 
we developed  an equational programming system called CFLP (Constraint Functional Logic 
Programming system).  We present  various examples to show the importance of equations in 
programming.  

1. Introduction

Modern  life  demands a certain  level  of mathematical maturity.   One of the most important is
the  ability  to  reason  with  equalities.   We  do  sophisticated  reasoning  with  equalities  in  arith-
metic in everyday life, although we are often unaware of it. 

Let  us  take  a  concrete  example.   Suppose  we  buy an  item priced  at  975  yen.   Since  in  Japan
consumer tax is 5 %, we have to pay over 1000 yen.  We calculate the exact amount of money
that we have to pay, while at the same time we fumble in the pocket and try to find  appropriate
coins and notes so as to avoid filling up the pocket with many  coins of change. We may decide
to give a note of 5000 yen and three 10 yen coins.  How do we decide?  

The involved  reasoning  is  complex;  it  is  not  mere  simplification of  numerical  expressions.   It
involves  equational  reasoning.   In  the  above  example  we  need  at  least  6  steps  of  equational
reasoning even if  integer  arithmetic  is  assumed.  Most  people can somehow perform this  kind
of  mathematics.   Indeed  they  master  it  at  a  fairly  early  age.   They  can  comfortably   handle
reflexivity, symmetry and transitivity of equality relation defined over numbers.

 In  this  paper   we  will  show that  reasoning  with  equality  over  various  domains  of   objects  is
also  important,  and  easy  to  practise  if  we  are  provided  with  appropriate  tools  for  reasoning.
One particular example that we are interested in here, and is relevant to mathematics education,
is  programming.   All  the  programming  examples  including  these  texts  are  in  Mathematica
Notebook.



2. Equality in Programming

We will first show a very basic programming system, a subset of Mathematica, and extend it to
a system for equational programming.  We begin by defining terms with which we construct a
program.  Our  vocabulary S, called signature, is given as a set of symbols {0, s, ∆, ≈}.  The
symbols  0,  s, ∆ and ≈ take  0, 1, 2 and 2 arguments, respectively.  These numbers are called
arity.  Furthermore we will use unlimited number of variables, say x, y, z, ... .  Then the syntax
of terms is as follows:

0 is a term.
x is a term if x is a variable.

f@ t1, ..., tn ] is a term if t1, ..., tn   are terms where  n is the arity of f and f œ S.
Nothing other than those constructed in this way is a term.

At this  point  we only have syntactic  equality,  i.  e.  terms are equal only if they look the same.
Really interesting things emerge when we introduce rewriting rules on the domain of the terms.
We define rewrite rules for the symbols ∆ and ≈. For readability we use those symbols as infix
operators.  The rewrite rules are specified in the following way in Mathematica.  

ü Rewrite rules

0⊕y_ := y;
s@x_D⊕ y_ := s@x⊕yD ;
0⊗y_ := 0;
s@x_D⊗y_ := Hx⊗yL⊕y :

In order to  distinguish variables from non-variable symbols, Mathematica  has  the convention
that the variables on the left hand side of the rewrite rule are marked by _ (underscore).

These four lines of rewrite rules define a term rewrite system R.  R induces the reduction rela-
tion ØR .
This  means  that  for  any  terms  s  and  t  in  s := t œ R  and  any  substitution  q,
s  q ØR  t  q  and  for  any  context  C@ D, C@uD ØR  C@vD, if  u ØR  v.
Here, context C[  ] denotes a term that has a hole to be filled by some term. 

The  reflexive  and  transitive  closure  of  ØR  is  denoted  by  ØK
* .  The  reflexive,  transitive  and

symmetric closure of ØR  is denoted by ¨R
* .  Finally we identify  equality ==R  with ¨R

* .

A purely functional language is based on the notion of rewriting terms by ØR .  The term which
is no longer related  by ØR  to any term is  called a ( ØR Lnormal form.  For example, we see
the term  s[s[0]]⊗s[s[s[0]]] is reduced to its normal form.



s@s@0DD⊗s@ s@s@0DDD
s@s@s@s@s@s@0DDDDDD

When R is understood from the context, we will drop subscript R in the above relations.  

Handling  equality  is  more  difficult  in  general  than  reduction.   To  see  if   s  ==R t  ,  we  have  to
show that s and t are related by ØR  via several terms. We do not know in advance in what way
we should rewrite  s and t   so that  the rewrites eventually  lead to the same term. This seems a
formidable problem,  unless we know certain properties of the  term rewrite system R.

Equality in programming is discussed in a more challenging context.  Instead of proving 
"x1, ...,xn . s ==R t  , we want to prove $x1, ...,xn  . s ==R t , 

where we are interested not only in the truth of the statement, but a  substitution q that makes  
sq  ==R  tq .  The computation to find the substitution is called solving in this paper.

In Mathematica we have a special function called Solve which computes such substitutions.

ü Solving equations: Cranes  and Tortoise   (cats and birds) problem
There are 32 legs and 10 heads of tortoises and cranes.  The number of  tortoises and cranes is
found by applying Solve to  equations:

Solve@8cranes + tortoises == 10, 2 cranes + 4 tortoises == 32<,8cranes, tortoises<D
88cranes → 4, tortoises → 6<<

We obtain the substitution {cranesØ4, tortoisesØ6} as the answer.

ü Solving equations on the domain of terms
Then, we will try to solve a similar problem over the domain of terms that we have defined.

Solve@8x⊕ y == s@s@s@0DDD<, 8x, y<D
— Solve::dinv :  

The expression x ⊕ y involves unknowns in more than one
argument, so inverse functions cannot be used.

Solve@8x⊕y == s@s@s@0DDD<, 8x, y<D
Mathematica  does not give solutions that we would expect.  You are invited to find the  reason
why it does not give the solutions.



The important observation that has to be made is that the symbols that we are using are uninter-
preted, i.e. they are used as mere symbols.  The symbol 0, for instance, is not an integer zero in
this  setting.  We  do  not  assume  any  mathematical  properties  on  the  symbols  except  that  we
define  rewrite  relations  and equality  induced  by ØR .   The  situation  is  very  different  from the
case of solving linear equations.

3. Narrowing 

Fortunately, we already have a method called narrowing for solving equations over the domain
of  terms.   Narrowing  is  a  procedure  to  prove  existentially  quantified  equations  by  presenting
values that bind the existential variables   Formally, given a rewrite system R and a sequence of
equations s1 ãt1 , ..., sn ãtn , it computes  a substitution q such that  sk q==R tk q for k = 1, ..., n.
The basic idea is similar to rewriting; rewrite the terms of both sides of an equation repeatedly
until  they  become the  same  term using  the  rewrite  rules  and  the  substitutions.   In  narrowing,
the substitutions are used not only to substitute terms for the variables in rewrite rules, but also
in equations to be solved.

This  method  can  be  formalized  as  a  calculus,  which  we  call  lazy  narrowing  calculus.   The
calculus  is  called  lazy  because  we  incorporate  in  the  calculus  an  algorithm for  systematically
identify and rewrite a certain preferred parts of equations.  The lazy narrowing  calculus is the
interpreter of  the programming language, which we discuss in the next section.

4. Language for solving equations

We now define   the language for our  equational  programming.  The signature  consists  of two
disjoint  sets  of  function  symbols;  the  set  of  constructors  and  the  set  of  defined  function  sym-
bols.   In  our  previous  example,  s  is  a  constructor  symbol,  and  ∆  and  ≈  are  defined  function
symbols. The defined function symbols are associated with rewrite rules, whereas the former is
not.  The  syntax  of  the  terms   is  as  given  before  except  that  they  are  (sometimes  implicitly)
typed. With that syntax we will represent a simply typed l-terms, e.g. l[{x, y}, plus[x, y]]: int Ø
int Ø int.

The equations  to be solved is often called a goal. To avoid  confusion of a Mathematica's built-
in equation  s  == t , we hereafter denote our equation by  sº t .

The  program  is  given  by  a  higher-order  rewrite  system  called  pattern  rewrite  system.   With
higher-order  rewrite  system  we  can  treat  functions  systematically.   Moreover,  we  can  find
higher-order solutions, i.e. functions, wherever possible.

A  pattern  rewrite  system  is  a  set  of  unconditional  rewrite  rules
f @t1, ..., tn D Ø t,

or conditional rewrite rules
f @t1, …, tnD Ø t › E.



We have  certain  restrictions  on the  syntactic  structure   and  the  types  of  the  terms that  can  be
used to form a pattern rewrite system (See [1] for technical details).  

5.  Solving equations over the domain of terms

à Solving first-order equations

We return to the problem of solving the equation in Section 2 with  our system [2].  The system
is called Constraint Functional Logic Programming system (CFLP for short).   CFLP is imple-
mented as a package of Mathematica.  After loading CFLP package, we start a CFLP session by
declaring the signature.  Ù denotes some first-order basic type, in this case type integer.

<< FrontendCFLP.m

DataConstructor@s : Ù → ÙD
CirclePlus and CircleTimes are actual function names of  ∆ and ≈ , respectively.

H∗ We clear previous definitions
about CirclePlus and CircleTimes ∗L

Clear@CirclePlus, CircleTimesD;

DefinedSymbol@CirclePlus : Ù → Ù → Ù, CircleTimes : Ù → Ù → ÙD
The  following  is  our  program assigned  to  a  variable  R.   All  the  rewrite  rules  in  this  example
turn  out  to  be  unconditional.   In  CFLP  we  have  to  declare  all  function  symbols.   Hence  the
other  symbols  are  automatically  identified  as  variables.   So we do not  have to  mark variables
with _. 

R = FLPProgram@8
0⊕y → y, s@xD⊕y → s@x⊕yD,
0⊗y → 0, s@xD⊗y → Hx⊗yL⊕y<D;

This is the goal to be solved.

G1 = 8exists@8X, Y<, X ⊕Y ≈ s@s@s@0DDDD<8∃8X:Ù,Y:Ù< X⊕Y ≈ s@s@s@0DDD<



We specify the solver to solve the above goal.  Our system is designed to be general, in that we
can also specify solvers for the problem and the strategy to apply various solvers.  We omit the
explanation  of  the  following  two  lines  of  program,  as  we  discuss  the  solver  collaboration  in
later  sections.   The reader  can see  that  we use Lazy Narrowing solver  (LNSolver)  for  solving
our problem.  Actually, the lazy narrowing solver consists of several narrowing calculi, and we
will use the one called LCNCd tailored to the first-order solving. 

H∗ solver ∗L
flp = MkLocalSolver@"LNSolver`"D;

ConfigSolver@flp, 8Program → R1, Calculus −> "LCNCd"<D
Computation, i.e., solving the equation, starts when we apply the solver LNSolver to the goal.

ApplyCollaborative@flp, G1D
Then  LNSolver yields the following solution:

LNSolver` yields

88X → 0, Y → s@s@s@0DDD<, 8X → s@0D, Y → s@s@0DD<,8X → s@s@0DD, Y → s@0D<, 8X → s@s@s@0DDD, Y → 0<<
We can ask ourselves the following questions.  Are these correct?  Are these all the solutions?
The former is concerned with so-called soundness, and the latter with completeness.  There are
several ways that you can convince yourselves of the affirmative of these questions. Concerning
the soundness, we apply the substitutions to the goal, and rewrite both sides of the equation.  In
our case the right hand side is already a normal form. So what you have to do is to reduce the
left hand side of the equation.  Another way of convincing yourselves is to use a model.  Inter-
pret 0 as the natural number zero, s as a function of increment by one over the natural numbers.
You will see that ∆ and ≈  are addition and multiplication operators on natural numbers.  Hence
the goal is actually  x + y = 3, and we solve for  x and y  in the domain of natural numbers.  It is
easy to  see  (by  simple  enumeration)  that   we have 4 solutions,  i.e.,  (x,  y)  = (0,3),  (2,1),  (1,2),
(3,0). These correspond to the solutions that we obtained. 

Proving soundness and completeness of the calculus in general setting requires deeper investiga-
tion [3].



à Solving higher-order equations

The next example is  more difficult.   It  involves  higher-order,  i.e.  function,  variables.   Even in
high school mathematics, we often encounter higher-order mathematical objects, and equations
involving  higher-order  objects.   However,  mostly  problems  are  restricted  to  obtain  first-order
quantities.  In the following example, we want to solve for higher-order variables, i.e. we want
to  obtain  a  function  as  a  solution.  As  in  the  previous  example,  Mathematica  is  able  to  give
solutions of certain kind of equations for certain domains.  For example, Mathematica's DSolve
gives solutions to differential equations.

DSolve@ f'@xD m x, 8f<, 8x<D
99f → FunctionA8x<, x2

ccccccc
2

+ C@1DE==
In the domain of terms, however,  this is not the case. Solving for higher-order variables is  non-
trivial task.  For certain class of programs, we do have a method for solving equations over the
domain  of  terms.  The  method  is  generically  called  higher-order  narrowing.   As  in  the  first-
order  case,  we  can  formalize  the  higher-order  narrowing  as  a  narrowing  calculus.   So  in  this
case let us use higher-order lazy narrowing calculus  HOLN.  Our problem is as follows:

G2 = 8exists@8F, Y : Ù → Ù<,
λ@8x<, F@x, Y@xDDD ≈ λ@8x<, x⊕s@s@s@0DDDDD<8∃8F:Ù→Ù→Ù,Y:Ù→Ù< λ@8x : Ù<, F@x, Y@xDDD ≈ λ@8x : Ù<, x⊕s@s@s@0DDDD<

We want to solve this equation for higher-order variables.  For those who are not familiar with
the lambda calculus, read l as Function.

holn = MkLocalSolver@"LNSolver`"D;
ConfigSolver@holn, 8Program → R, Calculus −> "HOLN"<D
ApplyCollaborative@holn, G2D

Then, CFLP returns the following solutions.



LNSolver` yields

88F → λ@8x1 : Ù, x2 : Ù<, x1⊕s@s@s@0DDDD<,8F → λ@8x1 : Ù, x2 : Ù<, x1⊕s@s@s@x2DDDD, Y → λ@8x57 : Ù<, 0D<,8F → λ@8x1 : Ù, x2 : Ù<, x1⊕s@s@x2DDD, Y → λ@8x45 : Ù<, s@0DD<,8F → λ@8x1 : Ù, x2 : Ù<, x1⊕s@x2DD, Y → λ@8x31 : Ù<, s@s@0DDD<,8F → λ@8x1 : Ù, x2 : Ù<, x1⊕x2D, Y → λ@8x19 : Ù<, s@s@s@0DDDD<,8F → λ@8x1 : Ù, x2 : Ù<, x2⊕s@s@s@0DDDD, Y → λ@8x9 : Ù<, x9D<,8F → λ@8x3 : Ù, x4 : Ù<, x4D, Y → λ@8x7 : Ù<, x7⊕s@s@s@0DDDD<<
Let  us  take  a  closer  look  at  the  second  solution:  {F→λ[{x1:Ù,x2:Ù},  x1⊕s[s[s[x2]]]],

Y→λ[{x57:Ù},0]}.  In order to solve the higher-order equation, the system needs type informa-
tion.  The solution is attached with types by the system.  Let us ignore the types temporarily and
describe the answer in the  mathematical representation familiar to college students.

F[x, y] =x⊕s[s[s[y]]]]

Y[x] = 0

It is easy to see that those are indeed solutions.

6.  Solving equations over various domains 

Many scientific problems are modeled as a set of equations.  Specialized algorithms have been
developed  for  solving  various  equations  over  various  domains.   The  domain  of  terms that  we
discussed  in  the  previous  sections  is  very  important  since  it  is  in  this  domain  that  equational
programs  are  interpreted.   Equations  and  rewrite  rules  are  regarded  as  programs.   These  pro-
grams are different from those of procedural programming languages such as JAVA and C.

The  next  challenge  is  whether  we  can  combine  solvers  to  make  a  single  framework  in  which
specific  solvers  are  called  for  specific  problems  automatically.   CFLP  is  actually  designed  to
work in this way.  CFLP is at present equipped with four solvers including HOLN.  The system
coordinates  those  solvers  to  work  on  a  given  goal.   A  programmer  can  either  use  a  default
combination of solvers or can program the collaboration of solvers using a simple coordination
language.  

Below we explicitly declare solvers and put the references to solvers  in variables holn, elim,
deriv  and polyn. The latter three variables hold the references to the solver for a system of
linear  equations  which  implements  Gaussian  elimination  method,   the  solver  for  partial  and
differential equations, and the solver for general polynomial equations which implements Gröb-
ner basis algorithm, respectively.



H∗ solvers ∗L
holn = MkLocalSolver@"LNSolver`"D;
elim = MkLocalSolver@"ElimSolver`"D;
deriv = MkLocalSolver@"DerivSolver`"D;
polyn = MkLocalSolver@"PolynSolver`"D;

Using  these  elementary  solvers  we can  define  a  new solver  that  combines  these  solvers.   The
following  defines  a  new  solver  which  applies  solvers  HOLN,  ElimSolver,  DerivSolver  and
PolynSolver  sequentially  (seq)  in  this  order.   This  application  is  repeated  until  the  goal
becomes fixed point (which means the goal is solved).

newSolver = repeat@seq@8holn, elim, deriv, polyn<DD;

Finally we apply the new solver to the goal

ApplyCollaborative@newSolver, G2D;

Of course, newSolver returns the same solution in this case since solvers other than HOLN does
not change the goal. We will see in the next section that the collaboration of solvers can solve
more sophisticated problems.

7.  Examples from geometry

Our final examples are taken from elementary geometry.  We give these examples since many
geometrical  properties  are  stated  declaratively,  i.e.,  without  resort  to  describing  a  concrete
method to realize those propertied. If declarative statements are given in equations, it is easy to
make them run on the computer.  Those statements can be regarded programs. 

Consider parallelism of lines. Let us first represent a line  a x + b y + c  = 0 by line[a, b, c] using
constructor line.  The following one taught in a high school  is easy to see.
line[a1,b1,c1] ˛ line[a2,b2,c2] → True ⇐ a1 b2-a2 b1 º 0

It says that  two lines are parallel if the coefficients of the equations of each line satisfies a1 b2
- a2 b1 º 0.  In our language we can omit " Ø True ", and write simply
line[a1,b1,c1] ˛ line[a2,b2,c2]  ⇐ a1 b2 - a2 b1 º 0

We  will  give  the  definitions  of  several  geometric  functions  below.   Our  language   requires
function declarations  with types.   In this  paper we omit the explanation,  but  the declaration is
necessary for our examples to run.

Constructor@TyLine@αD = line@α, α, αDD;
Constructor@TyPoint@αD = point@α, αDD;
Constructor@TySegment@αD = segment@TyPoint@αD, TyPoint@αDDD



Instance@8α : Reals< ⇒ TyLine@αD : EqD;
Instance@8α : Reals< ⇒ TyPoint@αD : EqD;
Instance@8α : Reals< ⇒ TySegment@αD : EqD
DefinedSymbol@

DoubleVerticalBar : TyLine@ÑD → TyLine@ÑD → Á,
UpTee : TyLine@ÑD → TyLine@ÑD → Á,
DownRightVector : TyPoint@ÑD → TyLine@ÑD → Á,
SegmentToLine : TySegment@ÑD → TyLine@ÑD,
PerpendicularBisector :

TyPoint@ÑD → TyPoint@ÑD → TyLine@ÑD,
MidPoint : TyPoint@ÑD → TyPoint@ÑD → TyPoint@ÑD,
BrTh : TyPoint@ÑD → TySegment@ÑD → TyPoint@ÑD → TyLine@ÑDD

Then we have the following function definitions.  

R2 = FLPProgram@8
line@a1, b1, c1D ˛ line@a2, b2, c2D ⇐ a1 b2 − a2 b1 ≈ 0,
line@a1, b1, c1D ¶ line@a2, b2, c2D ⇐ a1 a2 + b1 b2 ≈ 0,Hpoint@x, yD 4 line@a, b, cDL ⇐ a x + b y + c ≈ 0,
SegmentToLine@segment@point@x1, y1D, point@x2, y2DDD →

line@y2 − y1, x1 − x2, x2 y1 − x1 y2D,
MidPoint@point@px, pyD, point@qx, qyDD →

point@Hpx + qxLê2, Hpy + qyLê2D,
PerpendicularBisector@P, QD → m ⇐8m ¶ SegmentToLine@segment@P, QDD, MidPoint@P, QD 4 m<,
BrTh@P, seg, QD → n ⇐ 8PerpendicularBisector@P, RD ≈ n,

Q 4 n, R 4 SegmentToLine@segD<<D;

ConfigSolver@flp, 8Program → R2, Calculus → "LCNCd"<D;

The  functions  ¦,  4  ,  MidPoint,  SegmentToLine,  PerpendicularBisector  are  defined  as
auxiliary functions  to function BrTh.  Similar to  the parallelism of  lines,  the condition of  the perpendicularity of
two lines are asserted by :

liine[a1,b1,c1]¦ line[a2,b2,c2] ì a1  a2 + b1  b2 º 0

We  next represent a point whose x- and y-coordinates by Point[x, y].  The fact that  point P is
on line m is expressed by the notation P 4 m.

We  represent  a  segment  whose  end  points  are  Point[x1,  y1]  and  Point[x2,  y2]   by  Segment[-

Point[x1, y1] , Point[x2, y2] ].  Then the program SegmentToLine which transforms a segment to
a line is given as above.
PerpendicularBisector[P, Q]  returns a line that bisects and is perpendicular to Segment[P, Q].



After the definition of the program, we can issue a question like: 

G3 = exists@8l<, 8line@2, 3, 5D ¶ l<D;

ApplyCollaborative@seq@8flp, elim<D, 8G3<D
Then the system returns the following answer.

ApplyCollaborative@seq@8flp, elim<D, 8G3<D
LNSolver` yields

8∃8a2$2268:Ñ,b2$2268:Ñ< 8l → line@a2$2268, b2$2268, c2$2268D< &&
2 a2$2268 + 3 b2$2268 == 0<

ElimSolver` yields

99l → lineA−
3 b2$2268
ccccccccccccccccccccccccc

2
, b2$2268, c2$2268E==

Note that a2$2268, b2$2268 and c2$2268 are internally generated variables.

With these preparations we can give a program of one of six basic Origami folds, known as 
Huzita's axioms [4, 5].   The axiom (O5) says that given two points P and Q, and a line m , we can 
make a fold that places P onto m and passes through  Q. 

BrTh[P, s, Q]  computes a line n that passes through Q, such that the fold along the line n  brings P 
onto  s.  BrTh is read as "bring P onto s along the line through Q".

We will try to solve the goal defined below:

G4 = exists@8l<, l ≈ BrTh@point@3ê2, 1ê2D,
segment@point@0, 0D, point@2, 2DD, point@1, −2DDD

ApplyCollaborative@seq@8flp, polyn<D, 8G4<D
We finally obtain the solutions of the goal.98l → line@0, 0, 0D<, 8l → line@a1$2625, 0, −a1$2625D<,9l → lineA 3 b1$2625cccccccccccccccccccccccccc

2
, b1$2625, b1$2625

cccccccccccccccccccccc
2

E==
In this example, we have three solutions.



8.  Conclusion

In this paper we have shown the following:

†  Equality  plays an important role in programming.

† Equality  can  be  defined  in  many  domains,  but  the  equality  defined  over  the  domain  terms  is
essential one in programming.

† Many properties  defined in  terms of  equations  naturally  turn into  algorithms when solvers  for
equations are developed.

†  Solvers  can  be  combined  to  make  a  more  versatile  and  powerful  solver.   Collaboration  of
solvers  are important  for solving real-life problems.

† In  summary,  equations  are  (one  of)   bridges  between  mathematics   and  computer  science,
especially programming.
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