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Abstract

The least absolute error criterion is more robust and less easily affected by noise compared to the
least squares error criterion. The objective of this study is to present an absolute error criterion for
the sigmoidal backpropagation rather than the usual least squares error criterion. We use a 2-stage
algorithm for non-linear L1 optimization by Madsen, Hegelund and Hansen (1991) to obtain the
optimum result. This is a combination of a first order method that approximates the solution by
successive linear programming and a quasi-Newton method using approximate second order
information to solve the problem. To validate the performance and efficiency of the 2-stage L1
algorithm, a comparison is made on the error made in both the 2 stage L1 algorithm and the least
squares error algorithm.

I ntroduction

The L2 criterion approach has been commonly used in functional approximation and generalization
in the error backpropagation algorithm. We present an absolute error criterion for the sigmoidal
backpropagation rather than the usual least squares error criterion. The focus in the study is on the
single hidden layer multilayer perceptron but the implementation may be extended to include two or
more hidden layers. Hornik, Stinchcombe and White (1989), Cybenko(1989) and Funahashi (1989)
showed that it is sufficient to use a single hidden layered MLP in universal approximations. The
backpropagation algorithm as a steepest descent approach is too slow for many applications unless
some form of acceleration of learning rate or second order information is used. However, the
sigmoidal activation function enables the error function to be differentiable. This is why the error
function is incorporated into the algorithm by Hald and Madsen (1985) to minimize the sum of
absolute values of a set of non-linear functions. This is a combination of a first order method that
approximates the solution by successive linear programming and a quasi-Newton method using
approximate second order information to solve the system of non-linear equations arising from the
necessary first order conditions at a solution. The latter is intended to be used only in the final stage
of the iteration but several switches between the two methods may take place.

Since the time of Gauss, it has been generally accepted that L2 methods of combining observations
by minimizing the sum of squared errors have significant computational advantages over earlier L1
methods based on the minimization of the sum of absolute errors advocated by Boscovich, Laplace
and others. In neural network applications, the easily differentiable sum of squared errors has made
the L2 error criterion a natural choice. However, L1 methods are known to have significant
robustness advantages over L2 methods in many applications. Neural network learning with L1
criteria ought to make a network behave closer to the actual function to be approximated, regardiess



of the class of activation functions. This means that the network should be robust to the unexpected,
irregular training sequence and there is a possibility of avoiding a loca minimum in the
convergence. Thus, the convergence rate is improved because the influence of an incorrect sample
is reduced.

The Error Backpropagation Function

An MLP with asingle hidden layer isshown in Figure 1. Thereare | neuronsin the input layer, J
neurons in the hidden layer and K neurons in the output layer. K is normally taken to be one for the
case of functional approximation. The interconnection weights from the input to the hidden layer
are denoted by {w;} while those from the hidden layer to the output are denoted by {u;}. The

sigmoidal activation function for the hidden and output layers are h(-) and g(-) respectively. Each

exemplar vector x(@ is mapped into an output z@ from the network as compared to the target
output t@, where q=1,2, ---,Q isthe number of exemplars or training sets.
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Figure 1 Single hidden layer neural network for training.
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The Two StagelL 1 Algorithm

The function to be minimized is

F(X) = E(w, u)

Q
=a |t(‘4) - z(Q)| where g =1, 2 ---, Q arethe number of exemplars
g=1

g
=8 | fqf.
g=1
Here, the vector of unknown parameters are the weights in the hidden layer, w;, and weights in the
output layer, uj, inwhich
N=wwl RY and N=I1"J+JK,

where |, J and K are the total number of nodes in the input, hidden and output layers respectively
and i, ] and k are the corresponding nodes numbers.

Inalinear L1 problem (the error function fq linear), two efficient, basically different approaches
exist. They are the ssimplex linear programming method described by Barrodale & Roberts(1978)
and the direct descent method of Bartels, Conn & Sinclair (1978). In the case of the nonlinear L1
problem, an iterative procedure must be used.

@ (b)
Figure2 Two dimensional level curvesfor L1 objective function, F.

Notice that F has sharp edges shown as dotted curves in Figure 2 where one of the functions, f
equals zero. The optimization method used is that for unconstrained 2-stage minimization of the L1
norm of avector function (Madsen, Hegelund & Hansen, 1991). Figure 2 shows two different two-
dimensional unconstrained problems. In Figure 2(a), two functions equal zero at the solution while
in the case of Figure 2(b) only one function does so. The solutions are usually situated at an edge,
that is, at a point where one or more of the nonlinear functions equal zero. At the edge, the function
is non-differentiable and thus ordinary nonlinear programming methods are not efficient for
obtaining the solution. However, directional derivatives exist everywhere in any direction and this
can be utilized to obtain afast rate of final convergence.



In Figure 2(a), a quadratic rate of convergence can be obtained by applying Newton's Method to
solve the nonlinear equations f; =0, i =1 2. This requires only first derivatives. However, in

Figure 2(b), the linear approximations do not characterize a minimum at the edge. Some second
order information is needed to define the position of the minimum along the edge and, therefore,
also obtaining a fast rate of convergence to the minimum. In the algorithm, we approximate the
second order information on the basis of gradients which are assumed to be available.

Theactive set isdefinedas Z(x) ={i : f;(x) = 0}.
Because of continuity Z(y) I Z(x) for y in a neighbourhood of X and, hence, the objective
function can be locally split into a differentiable and a non-differentiable part:

FW= 4 [fm|+ 8 | fw]

il Z(x) il Z(x)
Although F is non-differentiable, the directional derivatives exist at any point X for any direction
e. Thefirst order correctionin F at X is expressed as

0 =|olFa0,  wheee = 9

Since the functions are twice differentiable, it follows that, for a >0 sufficiently small, we have
F(x+ax) = F(X) +aF&x) + O(a”) , and therefore, we obtain (by a continuity argument) that

F(x+d) =F(x)+CF(xd)+o([d[?).

For small valuesof |d||, DF(xad) =aDF (x;d), O<a£1l. Ifwe linearize each function f a
X, then for small changes of | d |, the linearized L1 function (with Z = Z(x)) can be expressed as

Fixd)=a|fi+1€)7d|[+a | i+ fito'd|
iz iz

=FX)+DF(x d)
snce fi(¥)=0 il Z implies § | fi(x)|=F(X). The signs of the functions are described
iz

through
} +1 for fi(x)>0
si(X°i0 forfi(x)=0
f-1, for f;(x)<O.
The L; Lagrangian function, with active set Z and signs s; of the inactive functions is
L(x, d)= & sifi(x)+adfi(x,

iz iz
where & s;f;(X) is the differentia part of the objective function. Thus, a stationary point is
ilz

characterized by a nonlinear system of equations

L¢(x,d) =0, |d |£1 and fi(X) =0, il Z (1)
where L¢(x,d) denotes the derivatives with respect to x and d; =0 for il Z. Therefore, we
consider the above nonlinear system of equations as a set of (N +s) rea eguations in

(N + s) unknowns where sis the number of elementsat  Z(Xx).



The 2-stage L1 optimization algorithm is a combination of a first order method that approximates
the solution by successive linear programming and a quasi-Newton method using approximate
second order information to solve the system of nonlinear equations arising from the necessary first
order conditions at a solution. The latter is intended to be used only in the fina stages of the
iteration, but several switches between the two methods may take place.

The agorithm to be described consists of four parts (Hald & Madsen, 1985): The Stage 1 iteration,
the Stage 2 iteration, conditions for switching to Stage 2 and causes for switching back to Stage 1.
The iteration always starts in Stage 1.

(i)

(if)

(iii)

The Stage 1 iteration is a first order algorithm for linearly unconstrained minimax
optimization. At the kth stage of the iteration, with an approximation, x,, of the solution and

aloca bound, Ly, the gradient information at X, isused to find a better approximation X,.;.
Therefore, we find the increment asa solution h, of the linearized L1 problem: Minimize (as

_ m
a function of h) F(x;h) =4 fi(x)+ fiQ(k)Tb| subject to | h|, £ Lx. The linear
i=1

problem is solved very efficiently using an implementation of the algorithm of Bartels, Conn
& Sinclair (1978). The point (x, +h,) is accepted as the next iteration point provided that
the decrease in F exceeds a smal multiple of the decrease predicted by the linear
approximation. Therefore, Xa1 = X +hy provided that

F(x,)- F(X, +h) 2 r(F(x,)- E(Zki h,)) with r =0.01. If this inequality does not hold,
we let Xy = X
Thechoiceof L, isaso based on the inequality with another value of r. If the decrease in

F is rather poor we wish the bound to be smaller. If the decrease is very close to the decrease
predicted by the linear approximation, we wish the bound to be increased. In fact, if the

inequality is not true with r =0.25, welet L, =0.25| hy|,; if itistrue with r =0.75,
welet Ly, =2| b, - Inal other cases, welet Ly, =| h|, . Theserulesensurethat L is

decreased, when X, = X -

Conditionsfor switchingto Stage 2 is set when the active set (or the solution set of the latest
linear problem) have been stabilized or constant for a certain number of consecutive Stage 1
iterations. The Stage 2 iteration is introduced in order to speed up the final rate of
convergence in cases where quadratic convergence is not obtained using the stage 1 iteration.
Itisrequired that Z, =2, ;| =...=Z,_, , tha is, the active set must have been constant for

(n+1) consecutive stage 1 iterations and also the first order multiplier estimates are in the
prescribed range - 1£ (d,), £1i1 Z,, where (d,), denotesthei th component of d, .

In the Stage 2 iteration, a quasi-Newton method with BFGS (Broyden-Fletcher-Shanno-
Goldfarb) updating formula is used for solving the stationary point of the objective function.
It is assumed that an active set Z approximating the corresponding quantities in the solution
has been determined before Stage 2 is entered. Here, the values of x,, d,, and B¢ obtained
in Stage 1 are used as starting values. The BFGS formula updates the approximate Hessian
matrix containing second order information. The values obtained in Stage 1 are used as



starting values in Stage 2. The implementation solves the equation using Gaussian elimination
on the whole system.

(iv) Theconditionsfor switching back to Stage 1 are set up to ensure that if a Stage 2 iteration is
started with an improper active set, then a switch back to Stage 1 will take place. It is

required that | (d,)i|£1 i1 Z hold for every iteration k and that there is no change in
sign for the inactive function during the Stage 2 iteration. (d, ); denotes the ith component of
d,. Finally, it is required that the residuals corresponding to the left-hand side of Eq.(1)
decrease in every iteration in the following sense:
| r(Xerr D) |ED||r (%, d)| where 0<h<land r(x,,d,)denotes the left-hand side
of Eq.(1) at the kth stage of the iteration.

Simulation Resultsusing 5 Non-linear Functions

The performance of the 2-stage L1 error backpropagation algorithm was tested using five non-linear
functions. These functions were scaled so that the standard deviation is 1 (for a large regular grid
with 2500 pointson [0,1]?), and trandated to make the range nonnegative (Hwang et al., 1994).

This facilitates performance comparisons across the different functions. The abscissa values
{(x1, %)} were generated as uniform random variates on [0,1] which are independent of each

other. We generated 225 points {(x, x,,)} of abscissa values, and used this same set for
experiments with all the five functions, thus eiminating an unnecessary variability component in
the ssimulation. In other words, y,) = gt (x,,,x,,), for ¢=12-..,225and j=1--,5.

Figure 3, which is generated using MATLAB, gives 3-dimensional perspective plots of the five
functions using a meshgrid of the 225 points. The functions are as follows:

() SmplelInteraction Function: g® (x,x,) =10391((x, - 4) XX, - .6) +.36) .
(i) Radial Function :
9@ (%, X,) =24.234 (r*(.75- r?)),r> =(x, - .5)* +(x, - .5)°.

(i) Harmonic Function: g® (x, x,) = 42659 ((2+ %)/ 20+ Re(2%)) ,

where z = x; +ix, - 5(L+i), or equivalently, with x; =x- 5 X, =x - .5

9@ (%, Xp) =42.659 (.1+X;(.05+X;* - 10x? X2 +5X%3})) .
(iv) Additive Function: g® (x,,x,) =13356(151- x,) +e>¢?
sn(3(x, - 6)?) + e**2 -9 dn(dp(x, - 9)?)

(v) Complicated Interaction Function:

96 (%, %,) =19 (135+ % Sn(13(x, - .6)2) xe % sin(7%,) ).



(@ g® =dmple interaction (b) g® = radial
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(c) g® = harmonic (d) g = additive

(e) g® = complicatedinteraction

Figure 3. Plots of functions g®,...,g®

The 225 points generated from the five non-linear functions as shown in Figure 3 are then trained
using the error backpropagation function using 8 nodes in a single hidden layer. The same starting
points were used for all the functions. The weights or parameters generated are fed back into the
error backpropagation function and the resultant output function is then generated to produce the
approximated functions.



Tablel Comparison of accuracy determined by the FVU error measure on two stopping criterions
using 8 hidden nodes.

FVU error measure with stopping criterion

-5 - 8
[l <20 2]y [ i< 207 ]
g = smple interaction 0.00599438 0.00362016
g? = radia 0.02570136 0.02157959
g = harmonic 0.55727138 0.54078910
g® = complicated interaction 0.20382973 0.19519377

Asin the paper by Hwang et al. (1994), the fraction of variance unexplained (FVU) on the
test set is used for the comparison of the accuracy in the simulations of the five non-linear
functions. It is defined as

g .

a (G(x,) - 9(x,)”
FVU =%

é(g(xq)- g(x)’

. Q
where g = g, j=12--,5 ad g(x) :%élg(xq).
q:

Note that the FVU is proportional to the commonly used mean square error (MSE) and a more
intuitive value is its square root. The accuracy is determined by the FVU error measure of the 225
independent test data above. We show in Table 1, a comparison of the FVU error measure with two
different stopping criterion on al the five non-linear functions. It is obvious for al the five
functions that as the stopping criterion becomes more accurate, the FVU error measure becomes
smaller. An obvious result also, is that the harmonic function is the most difficult to approximate in
the sense of needing the most neurons for a given approximation error bound.

Comparison Between the Perfor mance of the 2-stagelL 1 Algorithm and the Sum of L east
Squares Error Algorithm

To further validate the performance and efficiency of the 2-stage L1 algorithm, a comparison is
made between the 2-stage L1 agorithm and the sum of least squares error. The total sum of the
absolute errors between the true and calculated values for each iteration with 225 training points is
made for both the 2-stage L1 and the least squares error backpropagation algorithms on the five
non-linear functions g® to g® described. The error values are calculated for the first 300
iterations in al the five functions and a comparison is shown in Figures 4(a)-(e). From the five
graphs, it is obvious that the 2-stage L1 algorithm (bold line — series 2) outperform the sum of least
squares error backpropagation (fine line — series 1). The few spikes in the error is due to the
switches between the two stages in the 2-stage L1 algorithm.



Comparison of sum of absolute error of the 2-stage L1 and backprop for g1
= simple interation function

900 4

800 4

700 4

600 4

500 4

400 4

225 training points

300 4

:{L\

0 50

Total sum of absolute error between the true
and calculated values for each iteration with

200 250 300 350

number of iterations

100 150

Total sum of absolute error between the true and

calculated values for each iteration with 225

training points
w
8

Comparison of sum of absolute error of the 2-stage L1 and backprop for g2 = radial
function

600 4

@
8

IS
8

- ---- - Seriesl
Series2

N
8

150 200 250 350

Number of iterations

100

(@ g® =smpleinteraction

(b) g@ = radia

Comparison of sum of absolute error of the 2-stage L1 and backprop for g3 = harmonic
function

1000
900
800
700
600

---- - Seriesl
500

Series2

training points

300
200

100

Total sum of absolute error between the true
and calculated values for each iteration with 225

100 150 200

Number of iterations

250 350

Total sum of absolute error between the true and

calculated values for each iteration with 225

Comparison of sum of absolute error of the 2-stage L1 and backprop for g4 = additive
function.

600+

o
3
I

4004

----- --Seriesl
Series2

training points
w
S
S

2004

H
1
<

150 200 250 300 350

Number of iterations

100

(c) g® = harmonic

Comparison of sum of absolute error of the 2-stage L1 and backprop for g5 = complicated
interaction function

——————— Seriesl
Series2

h teration with 225 training points

Y
10

0 50

150 200 250
Number of iterations.

100

(e g® =complicatelinteraction

(d) g“ = additive

Figure 4 Comparison of the sum of absolute errors of the 2-stage L1 (bold line — series 2)
and least square backpropagation (fine line — series 1) for functions g to ¢

in the first 300 iterations.

Summary

We have reviewed the error backpropagation function and incorporated the function into a 2 stage
L1 optimization. We have thus successfully implemented an error backpropagation algorithm using




the L1 criterion and tested the performance on five different nonlinear functions. The work here
provides an aternative to the usual L2 criterion for the investigation of the properties of other

architectures and learning procedures which involve substituting the least square criterion with the
least absolute criterion.

The single hidden layer MLP presented here permits generalization and this can be done in a
number of ways. The activation function may change from layer to layer (or from unit to unit). We

| J
can replace the simple linearity at each unit (i.e, the iélw”xi and élujkyj) by some more

complicated function of the x; and y;c. The architecture may be altered to alow for different links

between units of different layers (and perhaps aso of the same layer). The least absolute L1 error
criterion is preferable to other Lp criteria (p > 1) when applied to rea problems where the observed
data used in learning include some error. It provides an aternative to the usual L2 criterion for the
investigation of the properties of other architectures and learning procedures like, for example, the
radial basis function, which involves substituting the least squares criterion with the least absolute
criterion.

Refer ences

Barrodale, | & Roberts, F.D.K. An efficient algorithm for discrete L1 linear approximation with
linear constraints. SSAM Journal on Numerical Analysis 15(1978), 603- 611.

Bartels, R.H., Conn, A.R. and Sinclair, JW., Minimization techniques for piecewise differentiable
functions: the L1 solution to an overdetermined linear system, SAM Journal on Numerical

Analysis 15(1978), 224-241.

Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Sgnals and Systems. 2(1989), 303-314.

Funahashi, K., On the approximate realization of continuous mappings by neural networks Neural
Networks 2(1989) 183-192.

Hald, J. and Madsen, K., Combined LP and quasi- newton methods for non-linear L1 optimization,
S AM Journal on Numerical Analysis 22(1)(1985), 68-80.

Hornik, K., Stinchcombe, M. and White, H., Multilayer feedforward networks are universal
approximators, Neural Networks 2(1989), 359-366.

Hwang, JN., Lay, S.R., Maechler, M., Martin, R.D. and Schimert, J., Regresson modeling in
backpropagation and projection pursuit learning, IEEE Transactions on Neural Network.
5(3)(1994), 342-353.

Madsen, K., Hegelund, P. and Hansen, P.C., Robust ¢ subroutines for non-linear optimization,
Institute for Numerical Analysis, Technical University of Denmark, Report N1-91-03, 1991.



