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Abstract 
In this article, two methods are proposed to find the interval estimation for survivor function of two 
parameters exponential distribution under type II censoring. Survivor function is a probability of an 
individual surviving till time t. Lawless (1982), Bain and Engelhardt (1992) and Bury (1999) 
usually use traditional method to construct interval estimation. This interval needs an assumption 
that sample is exponentially distributed. We will use another method, known as the Bootstrap 
percentile. This method gives shorter interval than the traditional method and this method does not 
need an assumption that the sample is distributed exponentially. 
 
 
Introduction 
 The statistical analysis of what is variously referred to as lifetime, survival time or failure 
time data has developed into an important topic for researchers in many areas, especially in the 
engineering and biomedical sciences. Applications of lifetime distribution methodology range from 
investigations into the endurance of manufactured items so research involving human diseases.  

  The exponential distribution is used widely in the modelling of lifetime data. Historically the 
exponential distribution was the first lifetime model in which statistical methods in survival analysis 
were extensively developed. What distinguishes survival analysis from other fields of statistics is 
censoring. Vaguely speaking, a censored observation contains only partial information about the 
random variable of interest. The three types of censoring are the type I censoring, the type II 
censoring and random censoring (Miller, 1981). 

Failure times that resulted from an experiment that is run over a fixed time period in such a 
way that an individual’s lifetime is known exactly only if it is less than some predetermined value 
are said to be type I censored or time censoring. A type II censored data involves observations in 
which only the r smallest observations in a random sample of n items are observed. Censoring times 
are often effectively random. For example, in medical trial patients may enter the study in a more or 
less random fashion, according to their time of diagnosis. If the study is terminated at some 
prearranged date, then censoring time, that is the lengths of time from an individual’s entry into the 
study until the termination of the study, are random (Lawless, 1982). 

Lawless (1982), Bain and Engelhardt (1992) and Bury (1999) use traditional method to 
construct interval for survivor function on two parameters exponential distribution under type II 
censoring. This interval needs an assumption that sample is exponentially distributed.  Bootstrap 
method is a computer-based method for assigning measures of accuracy to statistical estimates, 



especially to calculate the confidence interval. The aim of using bootstrap method is to gain the best 
estimation from minimal data (Efron and Thibshirani, 1993).  

Fauzy and Ibrahim (2002a) use bootstrap method to construct interval estimation for one 
parameter exponential distribution under type II censoring. In Fauzy and Ibrahim (2002b) bootstrap 
method was utilised to construct the interval estimation for survivor function on one parameter 
exponential distribution under type II censoring. And again bootstrap method was used to construct 
the interval for two parameters exponential distribution under type II censoring (Fauzy and Ibrahim, 
(2002c)). In this paper comparison study will be made on the interval estimation of the  survivor 
function using both the conventional method and bootstrap percentile method. 

 
Methodology  

The data used for illustration is taken from the text Statistical Models and Methods for 
Lifetime Data, by Lawless (1982 page 130). We begin with the interval estimation for survivor 
function on two parameters exponential distribution under type II censoring using the traditional 
method. This will be followed with the searching of convergence condition from bootstrap’s 
repeated samples. Next, after knowing the convergence condition, confidence interval for survivor 
function on two parameters exponential distribution under type II censoring with bootstrap 
percentile method can be computed. 
 
Theory 

The statistical analysis of what is variously referred to as lifetime, survival time, or failure 
time data has developed into an important topic for researchers in many areas, especially in the 
engineering, medical research, insurance and biological sciences. The data in these various fields 
can be described as type I censoring or time censoring, type II censoring or lastly complete 
censoring. In type II censoring only the r smallest observations in a random sample of n items are 
observed.  
 The actual survival time of an individual, t, can be regarded as the value of a variable T, 
which can take any non-negative value. The different values that T can take have a probability 
distribution, and we call T the random variable associated with the survival time. Now suppose that 
the random variable T has a probability distribution with underlying probability density  function 
f(t). The distribution function of T is then given by: 
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which represents the probability that the survival time is less than some value t. The survivor 
function, S(t), is defined to be the probability that the survival time is greater than or equal to t, and 
so:  
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The survivor function can therefore be used to represent the probability that an individual survives 
from the time origin to some time beyond t (Collett, 1996). 
 
Type II Censoring 
The two parameters exponential distribution has probability density function (Lawless, 1982): 
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The joint probability density function (pdf) of the r smallest observations )((2))1(   . . .    rttt <<<  in a 

random sample of size n from (1) is:  
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To obtain the maximum likelihood estimation (m.l.e.) of µ̂  and θ̂  note that for any θ >0 (4) 

decreases as µ decreases. Also note that, regardless of the value of θ, )1(t is the largest value µ can 

take on in (4), since )((2))1(   . . .    rttt <<<≤µ . Hence: 
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Confidence intervals for θ and µ are respectively:  
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Interval estimation for survivor function is: 
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Bootstrap Percentile Method 
In setting up of the bootstrap method to find the confidence intervals and estimating 

significance levels, this method consists of approximating the distribution of a function of the 
observations and the underlying distribution, such as a pivot, denoted by Efron as the bootstrap 
distribution of this quantity. This distribution is obtained by replacing the unknown distribution by 
the empirical distribution of the data in the definition of the statistical function, and then resampling 
the data to obtain a Monte Carlo distribution for the resulting random variable (Bickel and 
Freedman, 1981).   

Bootstrap method is a computer-based method for assigning measures of accuracy to 
statistical estimates, especially to calculate the confidence interval. Bootstrap itself comes from 
“pull oneself up by one’s Bootstrap” which means to stand up by own feet, do with minimal 
resources. The minimal resource is a minimum data, data which away from certain assumption or 
data with no assumption at all about the population distribution. The aim of using bootstrap method 
is to gain the best estimation from minimal observation.  
 
The Bootstrap’s percentile procedures for the interval estimation of survivor function on two 
parameters exponential distribution under type II censoring are as follows: 
 

1. give an equal opportunity 1/r to every observation of r sample data of type II censoring, 



2. take r sample with replication, 
3. do step 2 until B times in order to get an “independent bootstrap replications”, 

,ˆ ,ˆ 2*1*
rr ββ B*ˆ ., . . rβ , and search for convergence condition. Calculate S(t) as follows: 
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4. define the confidence interval at the level (1-α) of the bootstrap percentile for survivor 

function of two parameters exponential distribution under type II censoring as 
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 Expressions (9) refer to the ideal bootstrap situation we must the number of bootstrap 

replications is infinite. So if B = 2000 and α = 0.05, ( ) ( )2/ *
rtS α  is the 50th  and ( ) ( )21 / *

rtS α−  is 

the 1950th  ordered value of the replications. 
 
Results And Discussion  

This data was taken from the text Statistical Models and Methods for Lifetime Data, by 
Lawless (1982 page 130). The data are mileages for 19 military personnel carriers that failed in 
service and can be described by using exponential model. There is no censoring, and the mileages 
are: 

 162,   200,    271,      320,    393,    508,    539,    629,    706,   777,  
 884, 1008,  1101, 1182, 1463,  1603, 1984, 2355, 2880 

 
This data is of type II censored and exponentially distributed with two parameters. We will 
construct interval estimation survivor function at 700 and 1250 hours or S(700) and S(1250). 
 
Traditional Method 
By equations (4)-(7), the survivor functions at 700 and 1250 hours are 

S(700) = 0.525493 and S(1250) = 0.272208 
 

Based on the above two parameters of exponential distribution under type II censoring, the interval 
estimation for survivor function at S(700) and S(1250), are tabulated in Table 1 and Table 2.  
 

Table 1. The floor (F), ceiling (C) and interval widths (IW) for survivor 
function at t = 700 at the level of (L) 99 % and 95 % 

 

L F  C IW 

99 % 0.219771 0.738703 0.518932 
95 % 0.306927 0.696797 0.389870 

 
 



 
Table 2. The floor (F), ceiling (C) and interval widths (IW) for survivor 

function at t = 1250 at the level of (L) 99 % and 95 % 
 

L F  C IW 

99 % 0.075689 0.542008 0.466319 
95 % 0.119619 0.481630 0.362011 

 
 
 
Bootstrap Percentile 

Bootstrap’s repeated result gives a convergence condition that begins at B = 4850. The plot 
between bias and replication is shown in Figure 1. 
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Figure 1. Plot between bias and replication 
 

Estimations θ, µ and S(t) at this replication are 

 0.266005  S(1250)  ;  0.524033  S(700)  ;  187.398   ˆ  ;  812.265   ˆ ===µ=θ  
 
After doing the bootstrap process, the floor (F), ceiling (C) and interval widths (IW) at t = 700 and 
1250 at the level of (L) 99 % and 95 % are depicted in Table 3 and Table 4. 
 

Table 3. The floor (F), ceiling (C) and interval widths (IW) for survivor 
function at t = 700 at the level of (L) 99 % and 95 % 

 

L F  C IW 

99 % 0.298157 0.736704 0.438547 
95 % 0.362916 0.664835 0.301919 

 
 



 
Table 4. The floor (F), ceiling (C) and interval widths (IW) for survivor 

function at t = 1250 at the level of (L) 99 % and 95 % 
 

L F  C IW 

99 % 0.083981 0.441740 0.357759 
95 % 0.127638 0.399036 0.271398 

 
 
Comparison of Interval Widths 
 Table 5 gives the interval widths of the survivor function on two parameters exponential 
distribution under type II censoring using the traditional method and the bootstrap percentile 
method.  
 

          Table 5. Comparison interval widths of survivor function at t =700   
 and t =1250 at level of 99 % and 95 % 
 

Method S(700) S(1250) 
 99 % 95 % 99 % 95 % 

Traditional  0.518932 0.389870 0.466319 0.362011 
Bootstrap percentile 0.438547 0.301919 0.357759 0.271398 

Widths 0.080385 0.087951 0.108560 0.090613 

 

Conclusion 
 Bootstrap percentile method has more potential in constructing interval estimation for 
survivor function on two parameters exponential distribution under type II censoring than the 
traditional method. And this method does not need assumption that the sample has to have an 
exponential distribution. 
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Appendix 
 
"bootstrap" <- function(x,B) 
{ 
data1 <- matrix(sample(x, size=r*B, replace=T),nrow=B) 
data1 
} 
 
x <- c(162, 200, 271, 320, 393, 508, 539, 629, 706, 777, 
       884, 1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880) 
r <- length(x) 
n <- 19 
 
t <- sum(x)+(n-r)*x[19]-n*x[1] 
teta <- t/r 
mu <- x[1] 
 
alpha <- 0.01 
tatas1 <- (2*r*teta) / (qchisq(alpha/2,2*r-2)) 
tbawah1 <- (2*r*teta) / (qchisq(1-alpha/2,2*r-2)) 
 
muatas1 <- mu 
mubawah1 <- mu - (r*teta*qf(1-alpha,2,2*r-2)/(n*(r-1))) 
 
alpa <- 0.05 
tatas2 <- (2*r*teta) / (qchisq(alpa/2,2*r-2)) 
tbawah2 <- (2*r*teta) / (qchisq(1-alpa/2,2*r-2)) 
 
muatas2 <- mu 
mubawah2 <- mu - (r*teta*qf(1-alpa,2,2*r-2)/(n*(r-1))) 
 
t1 <- 700 
surt1  <- exp(-(t1-mu)/teta) 
surb1a <- exp(-(t1-mubawah1)/tbawah1) 
sura1a <- exp(-(t1-muatas1)/tatas1) 
int1a <- sura1a-surb1a 
 
surb1b <- exp(-(t1-mubawah2)/tbawah2) 
sura1b <- exp(-(t1-muatas2)/tatas2) 
int1b <- sura1b-surb1b 
 
t2 <- 1250 
surt2 <- exp(-(t2-mu)/teta) 
surb2a <- exp(-(t2-mubawah1)/tbawah1) 



sura2a <- exp(-(t2-muatas1)/tatas1) 
int2a <- sura2a-surb2a 
 
surt2b <- exp(-(t2-mu)/teta) 
surb2b <- exp(-(t2-mubawah2)/tbawah2) 
sura2b <- exp(-(t2-muatas2)/tatas2) 
int2b <- sura2b-surb2b 
 
B <- 4850 
xstar <- bootstrap(x,B) 
 
data2 <- apply(xstar,1,sort) 
data3 <- apply(xstar,1,sum) 
theta <- (data3+(n-r)*data2[r,]-n*data2[1,])/r 
thetabar <- mean(theta) 
bias <- thetabar-teta 
 
miu1 <- data2[1,] 
miu <- mean(miu1) 
 
surb1 <- exp(-(t1-miu1)/theta) 
surbar1 <- mean(surb1) 
 
urut1 <- sort(surb1) 
l1 <- urut1[(alpha/2)*B] 
u1 <- urut1[(1-alpha/2)*B] 
sel1 <- u1-l1 
 
l2 <- urut1[(alpa/2)*B] 
u2 <- urut1[(1-alpa/2)*B] 
sel2 <- u2-l2 
 
surb2 <- exp(-(t2-miu1)/theta) 
surbar2 <- mean(surb2) 
 
urut2 <- sort(surb2) 
b1 <- urut2[(alpha/2)*B] 
a1 <- urut2[(1-alpha/2)*B] 
sela1 <- a1-b1 
 
b2 <- urut2[(alpa/2)*B] 
a2 <- urut2[(1-alpa/2)*B] 
sela2 <- a2-b2 

 
 
 
 
 


