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Abstract 
 
This paper presents the mathematical framework of discrete orthogonal moment 
functions based on Tchebichef polynomials, and provides the conceptual ideas on 
applying such moments to the problem of stereopsis. Stereo vision algorithms generally 
use a set of feature descriptors characterizing the image intensity distribution within a 
small window centered at the pixel being analyzed, to determine the disparity value, and 
thereby to estimate the depth of the image point at that pixel. Discrete orthogonal 
moments have several favorable properties making them good candidates for such 
applications. Some preliminary results obtained using a window based matching 
algorithm are presented. Apart from being able to represent independent image features, 
the capability of discrete orthogonal moments to reconstruct the intensity distribution 
from a moment set could perhaps be utilized in developing a coarse-to-fine disparity 
estimation algorithm.  

 
1   Introduction 

Estimating the depth information from a pair of stereo images is an important problem in 
computer vision and photogrammetry. The depth information can be translated into a 
closely related information of pixel disparities, based on the stereo camera geometry, and 
noting that corresponding pixels in the stereo image are projections of the same point in 
the three-dimensional scene. Stereo vision (or stereopsis) thus generally means the 
correspondence problem of finding for each point in one image, the matching point in the 
other.   



Even though depth estimation is the primary aim of stereopsis in many computer vision 
and robot vision applications, stereo image analysis is also useful in a wide range of other 
areas such as the estimation of surface orientation [1,2], 3D motion estimation [3,4], 3D 
surface description[5,6], and information fusion. Stereopsis is also used as a tool in view 
synthesis which consists of processes for synthesizing new views from existing images of 
a scene [7,8]. 

The matching of corresponding areas in a stereo image pair can be done in many ways. 
Feature based methods establish the correspondence by using a set of extracted features 
such as edges or image discontinuities [9]. Area based algorithms compare the intensity 
values within a square window centered at a point on one image with the corresponding 
values in an identical square centered at points on the epipolar line of the other image. 
Researchers have used different types of cost functions to obtain an optimal matching set 
of windows.  The squared sum differences (SSD) is a classic example [8], where the sum 
of squared intensity differences across the window is used as a measure of dissimilarity. 
The cross correlation of intensity distribution is another example. Marr and Poggio [10] 
introduced a cooperative algorithm to computer stereo disparity by applying a set of 
global constraints. 

Moment functions represent global shape characteristics in an image, and have been used 
in many image analysis applications such as pattern recognition, pose estimation, and 
image classification [11]. A set of moment functions computed on the intensity values 
within a square window of one image can be compared with the corresponding function 
values on windows of the other image to establish a correspondence between regions of 
matching intensity distributions. A moment based sliding window algorithm is given in 
[12]. Most of such moment based algorithms use geometric moments for fast 
computation of the image features. However, geometric moments are highly sensitive to 
image noise, and also exhibit large variation in the dynamic range of values, which can 
yield wrong results in a matching algorithm. 

Discrete orthogonal moments using Tchebichef polynomials as basis functions were 
recently introduced [13]  as a feature descriptor that eliminates many problems associated 
with geometric as well as continuous moment functions like Zernike and Legendre 
moments.  Two important characteristics of Tchebichef moments, viz., (1) a discrete 
domain of definition which matches exactly with the image coordinate space, and (2) 
absence of numerical approximation terms,  allow a more accurate representation of 
image features than otherwise possible using conventional moments. As a result, images 
can be exactly reconstructed from a complete set of  discrete moments. 

This paper details a few of the conceptual ideas related to the application of discrete 
orthogonal moments to stereopsis. An area based algorithm similar to that of the SSD, 
where the Euclidean distance between two moment vectors is used as a similarity 
measure, is presented. The preliminary results are encouraging, and could be further 
improved by imposing additional constraints on disparity gradients, such as those 
employed by Marr and Poggio[10]. The motivation for this work is derived from the 
capability of discrete orthogonal moments to represent independent feature characteristics 
of the image. It is therefore expected that a matching algorithm using a suitably defined 



feature vector would perform better than conventional SSD or SAD (Sum of Absolute 
Differences) algorithms. As described in the next section, Tchebichef moments could 
also be used to reconstruct the intensity function from a moment set. This feature could 
also be used in developing robust sterepsis techniques based on a coarse-to-fine disparity 
estimation strategy. Some of the conceptual ideas towards such a goal are also given in 
this paper. 

 
2   Tchebichef Moments 

The Tchebichef polynomials of degree n are defined over a discrete coordinate space 
x∈ [0,1,2…N−1]  as  follows [14,15]: 

 ) ,          n, x  = 0,1, 2, . .N−1.  1;1,1;1,,()1()( 23 NnxnFNxt nn −+−−−=
(1) 

where (a)k is the Pochhammer symbol given by 

(a)k =  a (a+1) (a+2) …(a+k−1),   
(2) 

and   3F2(.)  is the generalized hypergeometric function, 
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Given a set of discrete image intensity values f(x,y), the Tchebichef moments of order 
p+q are defined as 
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where )(~ xtn  is a scaled version of  tn(x) given by  

)(~ xtn = tn(x) / Nn,  
(5) 

and  
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The following inverse moment transform allows us to reconstruct the image intensity 
distribution from a moment set: 
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A detailed description of the properties of Tchebichef polynomials and moments, 
together with their implementation aspects can be found in [13]. 
 

3   Stereo Geometry 

A simple stereo geometry used in many vision algorithms consists of two identical 
cameras whose image planes coincide, and whose lateral axes are parallel to the line 
connecting their centers of projection (Fig. 1). 
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Figure 1.  A simple stereo camera geometry 

 

If  z denotes the depth of the imaged point P with respect to the image planes, f the focal 
length, and B the lateral separation of the optical centers of the two cameras, then we can 
derive the equation relating the depth of the point to the disparity in the image at the 
corresponding pixel, as follows: 
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and therefore, 
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The epipolar line of a pixel on the left image is a line where the matching pixel lies on the 
right image. The above camera configuration also ensures that the epipolar lines for all 
pixels on a row is the same row of pixels (i.e., the pixels have the same y-coordinate) on 



the right image.  The search space for the matching pixels can thus be limited to the  
same row on the right image, without having to explicitly compute the epipolar line for 
every pixel.  
 
4  The Correspondence Problem 

The stereo correspondence problem in area based algorithms is solved by considering a 
square window centered at pixels on epipolar rows on each image, and by using a 
similarity measure that compares the intensity values/distribution in both the windows to 
determine the matching positions (Fig. 2). 
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Figure 2.  Area based stereo algorithm using local intensity matching. 

 
The window size (w x w) is chosen to be small so that a fairly accurate matching of the 
local intensity distribution around the pixel currently being analyzed, can be obtained. 
For every pixel on the left image at a distance x (from the left boundary of the image), 
window positions from x through x+dmax are considered,  where dmax is the maximum 
possible disparity value in the whole image. The correspondence between the matching 
positions of pixels is established by using a similarity measure derived from the intensity 
values within the windows. If  I(x, y)  and  I′(x, y) denote the intensity values at the pixel 
(x, y) on the left and the right image respectively, then the sum of squared difference 
(SSD) algorithm matches the pixel (x, y) on the left image with the pixel (x+d, y) on the 
right image, where the term 
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(9) 
attains a minimum value for  0≤ d ≤ dmax. 

In a moment based stereopsis algorithm, instead of comparing the intensity values  
directly as in (9), we compare the shape characteristics of the image within the square 
window.  Moments are weighted sum of intensity values, and therefore can provide a 



measure, which is more robust than the method using direct intensity 
matching/correlation, in the presence of image noise. 

 

5   Stereo Correspondence Using a Moment Vector 

The basic idea here is create a moment feature vector of size k,  v = {T1, T2, …,Tk} where 
each Ti  is a moment computed from the intensity values within the window (centered at 
(x,y) ) on the left image, and a similar vector  vd′ = {T1′, T2′, …,Tk′} from the intensity 
values within the window (centered at (x+d, y) ) on the right image, and then define a 
similarity measure using v and vd′. A similarity measure using the Euclidean distance 
between the two vectors is given by 
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The following are the main considerations in choosing the components of the feature 
vector: 

(i) The moments should represent some shape characteristic of the global 
intensity distribution within the window. 

(ii) The moments should not be sensitive to image noise. 

(iii) The components within the feature vector should have uniform dynamic range 
of values, so that the values of a few components will not dominate over the 
others in the decision criteria. 

(iv) The feature vector should have sufficient amount  of  information redundancy. 

Geometric moments are the simplest type of moments, but they do not satisfy the 
requirements (ii), (iii) and (iv) above. On the  other hand, discrete orthogonal moments 
satisfy all the requirements (except possibly (iii)), and in addition allows us to reconstruct 
the intensity distribution from a sufficiently small set of moments. The condition (iii) can 
be satisfied by a scale normalization as given in (5). 

This paper explores the feasibility aspects related to the application of Tchebichef 
moments as feature descriptors, since lower order Tchebichef moments have sufficient 
information content required for a correspondence problem, and each component of a 
different order would represent a statistically different characteristic of the intensity 
distribution. It may be noted that two important parameters to be decided here are the size  
of the window w, and the length  of  the  feature  vector  k.  A large window size 
increases the complexity of moment computation, looks for near-global features than 
near-local features, and leaves a large region around the image margins where a  proper 
correspondence could not be established. A window size which is too small will make the 
feature vector more sensitive to image noise, and will fail to capture essential information 



regarding the nature of intensity distribution in the neighborhood of the pixel. A window 
size which is roughly 10% of the image size is usually found acceptable. The size of the 
feature vector k depends on how much information the vector should store to ensure a 
fairly accurate match. Moments of the first few orders (normally up to a maximum order 
of four) are stored in the feature vector, so that the amount of computation is kept 
reasonably low, while capturing sufficient information about the intensity distribution 
within the window. 

 
6   Experimental Results 

A set of preliminary experiments were carried out with both binary and gray-level images 
to gauge the performance of Tchebichef moments. Fig. 3 shows a random-dot stereo 
image pair with three layers of disparities. The images which have a size of 64x64 pixels, 
are used as inputs to the Marr&Poggio’s cooperative stereopsis algorithm, the 
conventional SSD algorithm, and the moment based algorithm. A window size of 6x6 
pixels was chosen form both SSD and moment algorithms. The gray coded disparity 
maps obtained are also shown in Fig.3. 
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Figure 3. Random-dot stereo images and the disparity maps. 
 
For the moment algorithm, Tchebichef moments up to the second order were used in the 
feature vector. That is, 
 
 v = {T00, T10, T01, T20, T02, T11}. 

(11) 
The discontinuities seen on the boundaries of the disparity layers obtained from the 
Tchebichef moment algorithm are acceptable, since those are the regions where a 
random-dot stereogram will have undefined region correspondence (known as 
occlusions). The disparity map can be further improved by using well-known smoothing 
functions, or by introducing global constraints on disparity gradients. 

A set of synthetic gray-level images shown in Fig.4 was also used in the analysis, with 
higher order moment terms. Since Marr&Poggio’s cooperative algorithm is not suitable 
for gray-level images, only the SSD algorithm was used for the comparison of the 



outputs. Since the images are of size 128x128 pixels, a window of size 10x10 pixels was 
used in both the methods. 
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Figure 4.  Gray-level stereo images and their disparity maps 

The Tchebichef algorithm for the above set of images used moments of order up to 4, in 
the feature vector.  The SSD algorithm generates larger disparity regions around the true 
values, while the Tchebichef algorithm gives a significantly more accurate result. As 
mentioned earlier, the results could be further improved by adding continuity constraints 
on the disparity values. 

 
7   Future Work 

The experimental results shown in the previous section show that discrete orthogonal 
moments could be used for feature correspondence in a stereo vision algorithm. However 
the true potential of orthogonal moments lies in their capability to capture independent 
image characteristics, and to reconstruct the image from a moment vector. Possible future 
extensions of the work presented in this paper, are outlined below. 

i. Addition of continuity constraints on disparity values will limit the number of 
mismatched points, especially at image boundaries where large disparity 
gradients are present. 

ii. A detailed analysis on the feature representation capability of individual 
moments and their relative sensitivity to image noise will help in deciding 
which moment terms need be included in the feature vector, and what should 
be the optimal size of the feature vector for a given image. 



iii. An set of analytical relations between the moments of the left and the right 
images in terms of the unknown disparity values at each pixel can be derived 
and, then solved for the disparity values in closed-form. 

iv. A coarse-to-fine disparity estimation could be attempted using a progressive 
image reconstruction strategy. Images reconstructed using low order moments 
would contain coarse global level disparities. As we add higher order 
moments to improve the quality of the reconstructed  images, the disparity 
values can also be simultaneously propagated to finer pixel levels. 

 

8   Conclusions 

This paper has presented a new application area for discrete orthogonal moments, 
namely, stereo image processing. Being robust feature descriptors representing 
independent image characteristics, Tchebichef moments also have minimal information 
redundancy in a feature vector. These qualities were the main motivation factors for 
choosing a moment vector based similarity measure for a stereo algorithm. A few 
preliminary results have also been presented, which showed the feasibility of applying 
moment techniques to stereopsis. Possible extensions of the work using additional 
capabilities of orthogonal moments in image reconstruction, have been outlined. 
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