Self-dualized Threshold Functions

Kasiyah Machmudin
Email: kasiyah@makara.cso.ui.ac.id
kasiyah@cs.ui.ac.id
Mathematics Department, The University of Indonesia

Abstract

Threshold functions are Boolean functions that model neurons, processing units of an artificial neural network. The enumeration of threshold functions of five or fewer variables, generated by a computer, given in [10] exhibits an interesting phenomenon: the number of ($n, 2^{n-1}$) threshold functions is the same as the number of $(n-1)$-variable threshold functions. This paper shows that every ($n, 2^{n-1}$) threshold function is self-dual and there is a one-to-one correspondence between the set of all $\left(n, 2^{n-1}\right)$ threshold functions and the set of all $(n-1)$-variable threshold functions. An algorithm for generating threshold functions by self-dualization on threshold functions is given.

Key words: threshold function, minterm, self-dual

1. Introduction

A Boolean function f of n variables $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a threshold function if there exists a set of real numbers $w_{1}, w_{2}, \ldots, w_{n}$, called (input) weights, and θ, called the threshold, such that the following conditions are satisfied:

$$
\begin{align*}
& f(X)=1 \text { if } \sum_{1}^{n} x_{i} w_{i} \geq \theta \\
& f(X)=0 \text { otherwise. } \tag{1}
\end{align*}
$$

In this case, $\left[w_{1}, w_{2}, \ldots, w_{n} ; \theta\right]$ is called a structure of f.

The logical product, $f=x_{1} x_{2}\left(x_{1} A N D x_{2}\right)$ is a threshold function that can be realized by $[1,1 ; 2]$ or [1, 2; 3]. In general, a threshold function has an infinite number of structures. The logical summation $g=x_{1}+x_{2}\left(x_{1} O R x_{2}\right)$ is another threshold function. One of its structures is $[1,1 ; 1]$. However, $x_{1} \overline{x_{2}}+\overline{x_{1}} x_{2}\left(x_{1}\right.$ XOR $\left.x_{2}\right)$ is not a threshold function.

In this paper, each Boolean function is represented in the minterm expansion form (mef). The minterm expansion form is a disjunction of different minterms. A minterm is a conjunction of different literals, variables or their complements, in which each variable is involved exactly once. Every Boolean function f can be represented uniquely in the mef. For instance, the mef of $f=x_{1}+\overline{x_{2}} x_{3}$ is $f=x_{1} x_{2} x_{3}+x_{1} x_{2} \overline{x_{3}}+x_{1} \overline{x_{2}} x_{3}+x_{1} \overline{x_{2}} \overline{x_{3}}+x_{1} \overline{x_{2}} x_{3}+\overline{x_{1} x_{2}} x_{3}$.

If the number of variables is n, then there are 2^{n} different minterms. A minterm is called a true minterm (or a minterm) of f if it is appeared in the mef of f. Otherwise it is called a false minterm.

For simplicity, $S(f)$ represents the set of all true minterms of f and D represents the set of all minterms of n variables. A Boolean function of n variables having k minterms is called an (n, k) Boolean-function. If it is a threshold function, it is called an (n, k) threshold-function.

Let \mathbf{m}_{1} and \mathbf{m}_{2} be true minterms of f. If x_{i} appears uncomplemented (or complemented) in both \mathbf{m}_{1} and \mathbf{m}_{2}, we say that \mathbf{m}_{1} and \mathbf{m}_{2} are identical in the i-th literal. Suppose that \mathbf{m}_{1} and \mathbf{m}_{2} are identical in k out of n literals. The (logical) product of these common literals form a term \mathbf{s} called the identical subminterm between \mathbf{m}_{1} and \mathbf{m}_{2}. The ($n-k$) complementary literals in \mathbf{m}_{1} and \mathbf{m}_{2} form two complementary terms \mathbf{d} and $\sim \mathbf{d}$ called the differing subminterms between \mathbf{m}_{1} and \mathbf{m}_{2}. Hence, \mathbf{m}_{1} and \mathbf{m}_{2} can be written as $\mathbf{s d}$ and $\mathbf{s} \sim \mathbf{d}$ respectively. Negating a minterm means negating each literal of the minterm.

The enumeration of threshold functions having up to five variables, generated by computers, as given in [10], shows that the number of $\left(n, 2^{n-1}\right)$ threshold-functions is the same as the number of ($n-1$)-variable threshold functions. To find out whether or not this fact holds for any number of variables, we attempted to generate ($n, 2^{n-1}$) threshold-functions from ($n-1$)-variable threshold functions by self-dualization. Next, we induce a 1 -assignment to an $\left(n, 2^{n-1}\right)$ threshold-function to generate an ($n-1$)-variable threshold function.

Since self-dualization of an ($n-1$)-variable threshold function always results in an ($n, 2^{n-1}$) thresholdfunction, an algorithm for generating threshold functions by self-dualization is developed. The algorithm produces all $\left(n, 2^{n-1}\right)$ threshold functions if all $(n-1)$-variable threshold functions are given as the inputs. Although the algorithm does not produce all n-variable threshold functions, it works faster since it does not use a lot of comparison like the generating algorithms given in [10].

2. Some Properties of Threshold Functions

2.1. Preserving Operations and Closure Transformations

If f is a threshold function of n variables $x_{1}, x_{2}, \ldots, x_{n}$, then the (logical) addition and multiplication between f and a variable are also threshold functions. In other words,
(1) $f+x_{p}$,
(2) $f x_{p}$
are threshold functions, where $1 \leq p \leq n+1$ (see [8]).
Besides the closure transformations of threshold functions there are three preserving operations as follows. Given a threshold function f, the Boolean function g that can be obtained from f by one or combinations of the following operations is a threshold function, as given in [8]:
(1) negation of one or more variables;
(2) permutation of two or more variables; and
(3) negation of the output function, i.e., \bar{f}.

2.2. Complete Monotonicity

Consider an n-variable threshold function f. It is called completely monotonic if every pair of true minterms \mathbf{m}_{i} and \mathbf{m}_{j} the following condition holds: if \mathbf{s} is the identical subminterm between \mathbf{m}_{i} and \mathbf{m}_{j}, for every other pair of minterms that have \mathbf{s} as their identical subminterm then at least one of the
two is a true minterm of f. For example, $f=\overline{x_{1}} x_{2} x_{3}+x_{2} \overline{x_{2}} x_{3}$ is not completely monotonic. The identical subminterm of $\overline{x_{1}} x_{2} x_{3}$ and $x_{2} \overline{x_{2}} x_{3}$ is x_{3}. Consider other pair of minterms that are identical in $x_{3}: \overline{x_{1}} \bar{x}_{2} x_{3}$ and $x_{1} x_{2} x_{3}$. Both of them are false minterms of f.

Every threshold function is completely monotonic and every completely monotonic function of up to eight variables is a threshold function, see [16].

3. Self-dualization and Assignment

Given an n-variable threshold function f, the self-dualized function of f with respect to a new variable x_{n+1} is defined as

$$
\begin{equation*}
f^{H}=f x_{n+1}+f^{d} \bar{x}_{n+1} \tag{2}
\end{equation*}
$$

where f^{d}, the dual function of f, is obtained from f by negating all the variables and followed by negating the output:

$$
\begin{equation*}
f^{d}(X)=\bar{f}(\bar{X}) . \tag{3}
\end{equation*}
$$

In terms of minterms, \mathbf{m}_{i} is a minterm of $f(X)$ if and only if $\sim \mathbf{m}_{i}$, the negation of \mathbf{m}_{i}, is a minterm of $f(\bar{X})$, written as $\mathbf{m}_{i} \in \mathrm{~S}(f(X))$ if and only if $\sim \mathbf{m}_{i} \in S(f(\bar{X}))$. The set $S(\bar{f}(X))$ consists of all false minterms of $f(X)$. Thus, $S\left(f^{d}\right)=S(\bar{f}(\bar{X}))=\mathrm{D}-S(f(\bar{X}))$. Note that $S(f(X))$ and $S(f(\bar{X}))$ do not have to be disjoint.

A Boolean function is said to be self- dual if and only if $f=f^{d}$. Thus, f is self-dual implies \mathbf{m}_{i} is a true minterm of \bar{f} if and only if $\sim \mathbf{m}_{i}$ is a true minterm of f. As shown in [16] that f^{H}, named as the hyper function of f, is self-dual and f is a threshold function if and only if f^{H} is.

Given an $(n-1, k)$ threshold function f. The number of \bar{f} 's minterms is the same as the number of all possible minterms subtracted by the number of f 's minterms, $2^{n-1}-k$. Since \bar{f} and f^{d} have the same number of minterms, then the number of f^{H} 's minterms is $k+2^{n-1}-k=2^{n-1}$. Therefore, selfdualization of an ($n-1$)-variable threshold function always results in an $\left(n, 2^{n-1}\right)$ threshold-function.

Let f an (n, k) self-dual threshold function, $f=f^{d}$. Thus, f^{d} contains k minterms also. On the other hand, \bar{f} and f^{d} have the same number of minterms, i.e., $2^{n}-k$. Therefore, every n-variable self-dual threshold function has $k=2^{n-1}$ minterms. In other words, n-variable threshold functions having k minterms are not self-dual if $k \neq 2^{n-1}$. The following theorem shows that every ($n, 2^{n-1}$) thresholdfunction is self-dual.

Theorem 1:

Every ($n, 2^{n-1}$) threshold-function is self-dual.

Proof:

Let f be an ($n, 2^{n-1}$) threshold-function. Based on complete-monotonicity property of threshold function, for every true minterm \mathbf{m} of f, its complement, $\sim \mathbf{m}$, is a false minterm of f. Otherwise,
every pair of complementary minterms are true minterms; and hence the number of true minterms of f is 2^{n}. This contradicts to the fact that the number of true minterms of f is 2^{n-1}. Similarly, if \mathbf{m} is a false minterm of f, then $\sim \mathbf{m}$ is a true minterm of f, written as

$$
\begin{equation*}
(\mathbf{m} \in \mathbf{S}(f)) \Leftrightarrow(\sim \mathbf{m} \in \mathbf{S}(\bar{f})) . \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
(\sim \mathbf{m} \in \mathbf{S}(\bar{f})) \Leftrightarrow\left(\mathbf{m} \in \mathbf{S}\left(f^{d}\right)\right) \tag{5}
\end{equation*}
$$

From (4) and (5)

$$
\begin{equation*}
(\mathbf{m} \in \mathrm{S}(f)) \Leftrightarrow\left(\mathbf{m} \in \mathrm{S}\left(f^{d}\right)\right) \tag{6}
\end{equation*}
$$

We conclude that f is self-dual, i.e., $f=f^{d}$.
Let f_{1} and f_{2} be two different threshold functions of $(n-1)$ variables $x_{1}, x_{2}, \ldots, x_{n-1}$ and x_{n} be a new variable for both f_{1} and f_{2}. Since f_{1} and f_{2} are different, there is a minterm \mathbf{m} of f_{1} that is not a minterm of f_{2}; hence, $\mathbf{m} x_{n}$ is a minterm of f_{1}^{H} but not a minterm of f_{2}^{H}. Consequently, $f_{1}^{H} \neq f_{2}^{H}$. In other words, $f_{2} \neq f_{2}$ implies $f_{1}^{H} \neq f_{2}^{H}$. Thus, self-dualization can be regarded as a one-to-one mapping from the set of all ($n-1$)-variable threshold functions to the set of all $\left(n, 2^{n-1}\right)$ thresholdfunctions. The next question is whether or not the mapping is surjective. To answer the question, we investigate how to generate an ($n-1$)-variable threshold function from an ($n, 2^{n-1}$) thresholdfunction using 1 -assignment.

Let $X=\left(x_{1}, x_{2}, \ldots x_{n}\right) . A_{j}$ is a k-assignment on X if A is a mapping from a subset having k elements X_{A} of the variables into $\{0,1\}$ and f_{A} represents a function obtained from f induced by assignment A. In particular, A is a 1 -assignment if A is assignment $\left\{x_{j}=1\right\}$ or $\left\{x_{j}=0\right\}, 1 \leq j \leq n$.

Let A be assignment $\left\{x_{j}=1\right\}$. Let's consider all two variables threshold functions having two minterms. Assigning one of its variables to either 1 or 0 gives all threshold functions having one variable, as shown by the following table. On the other hand, self-dualization will convert the functions back to the original functions.

Table 1: $(2,2)$ Threshold Functions Induced by 1-Assignment and Self-dualization

No.	$(2,2)$ threshold- function f	f^{d}	f_{A}	$f_{A}^{d}=f_{\bar{A}}$	$f_{A}^{H}=f_{A} x_{2}+f_{A}^{d} \bar{x}_{2}$
1	$x_{1} \bar{x}_{2}+\bar{x}_{1} \bar{x}_{2}$	$x_{1} \bar{x}_{2}+\bar{x}_{1} \bar{x}_{2}$	0	$x_{1}+\bar{x}_{1}$	$x_{1} \bar{x}_{2}+\bar{x}_{1} \bar{x}_{2}$
2	$x_{1} x_{2}+\bar{x}_{1} x_{2}$	$x_{1} x_{2}+\bar{x}_{1} x_{2}$	$x_{1}+\bar{x}_{1}=1$	0	$x_{1} x_{2}+\bar{x}_{1} x_{2}$
3	$x_{1} x_{2}+x_{1} \bar{x}_{2}$	$x_{1} x_{2}+x_{1} \bar{x}_{2}$	x_{1}	\bar{x}_{1}	$x_{1} x_{2}+x_{1} \bar{x}_{2}$
4	$x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}$	$x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}$	\bar{x}_{1}	x_{1}	$x_{1} x_{2}+\bar{x}_{1} \bar{x}_{2}$

The last column shows that every $(2,2)$ threshold-function f can be decomposed into two threshold functions $f_{1}=f_{A}$ and $f_{2}=f_{A}^{d}=f_{\bar{A}}$ such that $f=f_{A}^{H}=f_{A} x_{2}+f_{A}^{d} \bar{x}_{2}$, where A is a 1 -assignment. Does
this principle apply to any number of variables? In other words, does 1 -assignment on an n-variable threshold function always result in an ($n-1$)-variable threshold function?

Given a threshold function f of n variables $x_{1}, x_{2}, \ldots, x_{n}$. We gather all minterms in which x_{n} appears uncomplemented in one group and those in which x_{n} appears complemented into another group. Then f can be expressed as $f=f_{1} x_{n}+f_{2} \bar{x}_{n}$. We induce f by 1-assignment $A=\left\{x_{n}=1\right\}$ to get f_{1}, $f_{1}=f_{A}$. Similarly, we construct f_{2} by inducing f by $\bar{A}, f_{2}=f_{\bar{A}}$. The following lemma shows that if f is a threshold function then f_{A} is threshold function and so is $f_{\bar{A}}$.

Lemma:

Every threshold function f of n variables $x_{1}, x_{2}, \ldots, x_{n}$ can be decomposed into two threshold functions f_{A} and $f_{\bar{A}}$ such that

$$
\begin{equation*}
f=f_{A} x_{n}+f_{\bar{A}} \bar{x}_{n} \tag{7}
\end{equation*}
$$

where f_{A} and $f_{\bar{A}}$ are threshold functions of ($n-1$) variables $x_{1}, x_{2}, \ldots, x_{n-1}$.

Proof:

Every Boolean function f can be decomposed into f_{A} and $f_{\bar{A}}$ such that $f=f_{A} x_{n}+f_{\bar{A}} \bar{x}_{n}$, where $A=$ $\left\{x_{n}=1\right\}$. Since f is a threshold function, then there exists a structure $\left[w_{1}, w_{2}, \ldots, w_{n} ; \theta\right]$ that realizes f. This means,

$$
\begin{equation*}
\left(\sum_{1}^{n} x_{i} w_{i} \geq \theta\right) \Rightarrow f(X)=1 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{1}^{n} x_{i} w_{i}<\theta\right) \Rightarrow f(X)=0 \tag{9}
\end{equation*}
$$

Since $x_{n}=1$ then (8) and (9) can be written as

$$
\begin{equation*}
\left(\sum_{1}^{n-1} x_{i} w_{i} \geq \theta-w_{n}\right) \Rightarrow f(X)=1 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{1}^{n-1} x_{i} w_{i}<\theta-w_{n}\right) \Rightarrow f(X)=0 \tag{11}
\end{equation*}
$$

Note that if $f=0$ then $f_{A}=0$; and if $f=1$ then f_{A}. Consequently,

$$
\begin{equation*}
\left(\sum_{1}^{n-1} x_{i} w_{i} \geq \theta-w_{n}\right) \Rightarrow f_{A}(X)=1 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sum_{1}^{n-1} x_{i} w_{i}<\theta-w_{n}\right) \Rightarrow f_{A}(X)=0 \tag{13}
\end{equation*}
$$

These prove that f_{A} is realizable by $\left[w_{1}, w_{2}, \ldots, w_{n-1} ; \theta-w_{n}\right]$. Similarly, since $\bar{A}=\left\{x_{n}=0\right\}$ then $f_{\bar{A}}$ is realizable by $\left[w_{1}, w_{2}, \ldots, w_{n-1} ; \theta\right]$. Thus, 1 -assignment on a threshold function always results in a threshold function having one fewer variable. In particular, if $f_{\bar{A}}=f_{A}^{d}$, the decomposition of f given in (7) is a self-dualization of f_{A}. This condition is satisfied when f is self-dual or f is an $\left(n, 2^{n-1}\right)$ threshold-function, as given by the following theorem.

Theorem 2:

Every $\left(n, 2^{n-1}\right)$ threshold-function can be obtained by self-dualization of an ($n-1$)-variable threshold function g

$$
\begin{equation*}
f=g x_{n}+g^{d} \bar{x}_{n} \tag{14}
\end{equation*}
$$

Proof:

Let f be an $\left(n, 2^{n-1}\right)$ threshold-function. Consider the decomposition of f and $f^{d}, f=f_{A} x_{n}+f_{\bar{A}} \bar{x}_{n}$ and $f^{d}=f_{A}^{d} x_{n}+f_{\bar{A}}^{d} \overline{x_{n}}$. Since f is self-dual, then $f=f_{A} x_{n}+f_{\bar{A}} \bar{x}_{n}=f^{d}=f_{A}^{d} x_{n}+f_{\bar{A}}^{d} \overline{x_{n}}$. Therefore, f_{A} and $f_{\bar{A}}$ are self-dual threshold functions and hence each of them has 2^{n-2} minterms. The only possibility is that $f_{A}=f_{\bar{A}}\left(f_{A}=f_{\bar{A}}=g=g^{d}\right)$.

Suppose that $f_{A} \neq f_{\bar{A}}$. Since they have the same number of minterms, 2^{n-2}, then there are minterms $\mathbf{m}_{1} \in S\left(f_{A}\right), \mathbf{m}_{1} \notin S\left(f_{\bar{A}}\right)$ and $\mathbf{m}_{2} \in S\left(f_{\bar{A}}\right), \mathbf{m}_{2} \notin S\left(f_{A}\right)$. Since $f=f_{A} x_{n}+f_{\bar{A}} \bar{x}_{n}$, then $\mathbf{m}_{1} x_{n} \in S(f)$, $\mathbf{m}_{\mathbf{2}} x_{n} \notin S(f), \mathbf{m}_{\mathbf{1}} \overline{x_{n}} \notin S(f), \mathbf{m}_{\mathbf{2}} \overline{x_{n}} \in S(f)$. As a result, f is not completely monotonic and therefore it is not a threshold function. It is a contradiction.

4. Algorithm

The program given in [10] generates threshold functions of up to five variables. For threshold functions having six variables, the program becomes incredibly slow since it selects all completely monotonic Boolean functions from huge number of generated functions. The following algorithm generates all $\left(n, 2^{n-1}\right)$ threshold functions using self-dualization in a faster way (without checking the complete monotonicity property) with the set of all $(n-1)$ threshold functions as the inputs.

In implementing the algorithm into a computer program, we need to represent minterms and functions. For instance, a function can be represented as a set of non-negative integers. Each integer m represents the decimal version of the binary representation b of the minterm \mathbf{m}. If the number of variables is n, the binary representation of a mintem \mathbf{m} is a binary number b of length n; if x_{i} appeared uncomplemented in \mathbf{m} then the i-th digit of b is 1 , and 0 otherwise.

If $\mathrm{S}(f)$ is the set of f 's minterms, then $\mathrm{S}(\bar{f})=\mathrm{D}-\mathrm{S}(f)$, where D is the set of all possible minterms of n variables. The negation of minterm \mathbf{m}, represented by m, is a minterm represented by $2^{n}-m$. Multiplying f by x_{n} can be done by multiplying each integer in $\mathrm{S}(f)$ by 2 followed by adding the result by 1. Multiplying each integer in $\mathrm{S}(f)$ by 2 will produce $f \overline{x_{n}}$. The following algorithm generates ($n, 2^{n-1}$) threshold functions by self-dualization, where threshold functions are represented as sets of integers in D .

