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Abstract:  This paper will discuss methods to estimate partial derivatives at scattered data points 
in 3-dimension.  In particular, we shall discuss methods based on data points that have been 
triangulated.  One very quaint method is the convex combination method (Goodman et al., 1995) 
that we shall discuss and improve upon using Martin’s weights. 
 
 
1. Introduction 
 

Let us say we are given a set of scattered data points in 3-dimension and we wish to define a 
surface which passes through these points.  One very popular approach is to start by defining non-
overlapping triangular patches with the points being the vertices of these triangles.  Some of the 
methods that we can use to triangulate  data points can be found in Barnhill (1977), Brassel and Reif 
(1979) and Fang and Piegl (1992a, 1992b).  After the triangulation process, we interpolate each of 
the generated triangular patches.  This can be done using a choice of several existing methods, e.g. 
splines, Bézier’s methods.  Again, the more popular methods define the triangular surfaces based on 
control points that we can determine depending on how we want the triangular surfaces to join 
together.  Examples of references with basic but very extensive tutorials on how to generate 
triangular surfaces are Böhm et al. (1984) and Farin (1986). 
 
 How the triangular surfaces join at the boundaries will determine whether the overall surface 
looks smooth or not.  Therefore, it is important we place the control points for adjoining triangles in 
such a way that the adjoining surfaces join with the type of continuity we want.  A smooth overall 
surface results when the triangular surfaces join with tangential continuity, or 1C  continuity, at the 
very least.  For this to happen, the control points of every pair of adjoining triangular patches will 
need to be placed in such a way that the first set of inner control points at the common boundary of 
both patches are coplanar. 
 

 In order for us to calculate the position of these control points that yield a 1C  continuous 
surface, we need to know the first-order partial derivatives at the vertices of the triangles, or in other 
words, at all the given data points.  In actual practice, we would have collected these data points at 



  

field sites or some laboratory experiments and there is no possibility of knowing the partial 
derivatives at these points.  Therefore, if we still want to generate a smooth surface from these data 
points, we have no choice but to estimate the partial derivatives at these points. 
 
 One very common method used to estimate partial derivatives is the least squares method 
(Renka & Cline, 1984).  Although the least squares method is easy to understand, the calculation 
effort is tremendous.  Goodman et al. (1995) introduced the convex combination method that has 
been shown to be more accurate and requires less computation compared to the least squares 
method.  It is well known that for a triangular interpolation to be good, the generated triangles, 
though most likely scalene or isosceles, should be shaped as close as possible like that of an 
equilateral triangle, i.e. we do not want triangles that are too thin or too long.  However, sometimes 
the scattered data points that are given are such that when triangulated, thin triangles are inevitably 
generated.  In their paper introducing the convex combination method to estimate partial derivatives, 
Goodman et al. used the reciprocals of the base triangular areas as weights.  There is a weakness 
that Goodman et al.’s weights have with thin triangles and in this paper we shall replace their 
weights with Martin’s suggestion of the reciprocals of the base triangular heights to overcome this 
weakness.  We complete this paper with a pseudo computer program or algorithm that we hope 
readers can easily adapt to real codes. 
 
 
2. Goodman et al.’s convex combination method 
 
 The idea for the convex combination method is based on the polynomial interpolating three 
univariate data points.  It is well known that for a polynomial interpolating three data points to be 
unique, it has to be a quadratic. 
  
 Let us consider three consecutive univariate data points, ( )111 , −−− = iii yxI , ( )iii yxI ,=  and 

( )111 , +++ = iii yxI .  We shall also denote the base, or x-coordinate, distances between 1−iI  and iI  as 
 

11 −−= ii xxl         (1) 

 
and between iI  and 1+iI  as 
 

ii xx −= +12l                     (2) 

 
This is shown in Figure 1. 
 
 
 
 
 
 
 

 
 
 

Figure 1.  Figure showing three consecutive data points, 1−iI , iI  and 1+iI . 
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 We shall also denote 1g  as the gradient joining 1−iI  and iI , 
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and 2g  as the gradient joining iI  and 1+iI , 
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We shall now use Lagrange’s method to generate the unique quadratic interpolating 1−iI , iI  

and 1+iI . 
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Differentiating (5) with respect to x, we obtain 
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 Thus, the derivative at point ( )iii yxI ,=  is 
 

( ) ( )( ) ( )( ) ( )( ) 1
111

1

11

11
1

111

1 2
, +

+−+

−

+−

+−
−

+−−

+

−−
−

+
−−

−−
+

−−
−

= i
iiii

ii
i

iiii

iii
i

iiii

ii
ii y

xxxx

xx
y

xxxx

xxx
y

xxxx

xx
yx

dx
dy   (7) 

 
Substituting (1), (2), (3) and (4) into (7) and simplifying, we obtain 
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 We cannot use equation (8) to estimate the derivatives at the end-points because the 
quadratic interpolant is defined at only one side of each end-point when clearly, equation (8) 
requires that the quadratic be defined at both sides of each data point.  In order to overcome this 
problem, let us  as an example, assume that point ( )111 , −−− = iii yxI  is an end-point.  The derivative of 

the interpolating quadratic at this point is 
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Substituting (1), (2), (3) and (4) into (9) and simplifying, we obtain 
 

( ) ( )
21

21121
11

2
,

ll

lll

+
−+

=−−
gg

yx
dx
dy

ii         (10) 

 
 All that is left to do now is to translate the estimation of the partial derivatives in (8) for 
inner points and (10) for end-points to that for a 3-dimensional case.  In the 2-dimensional case, the 
base distance is the length of the curve projected onto the x-axis (see Figure 1).  Therefore, in the 3-
dimensional case, the base triangle shall be the triangle projected onto the xy-plane. 
 

Figure 2 shows an inner point k surrounded by triangular patches niTi  , ,1 , L= . 
 
 
 
 
 
 
 
 

Figure 2.  An inner point k surrounded by six triangular patches. 
 
 Goodman et al. translated the base, or x-coordinate, distances l  in equation (8) as the base 
areas of the triangular patches niTi  , ,1 , L= .  Therefore, the estimated partial derivatives at point k  

becomes 
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where nii  , ,1 , L=∆  are the base triangular areas and nig i  , ,1 , L=  are the partial derivatives of the 
triangular planes respectively.  
 
 Now, let us look at a boundary point that we shall denote as j, where j is one of the vertices 

of triangles niTi  , ,1 , L= .  We denote also triangles niTi  , ,1 , L=′  as the adjoining triangles to 
triangles niTi  , ,1 , L=  respectively.  This is shown in Figure 3. 

 
 
 
 
 
 
 
 
Figure 3.  Triangles T 1, T2  and T3 having boundary point j as a vertex and adjoining triangles T1

’,  T 2
’ and T3

’  respectively. 
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 In order to obtain a convex combination estimate for the partial derivatives at the boundary 
points, Goodman et al. translated the partial derivative for an end-point (10) for the univariate case 
to the bivariate case as follows: 
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and as before, ∆ are the base triangular areas, g are the partial derivatives of the triangular planes 

respectively and ni
i

 , ,1 ,
1

L=
∆

 are the weights. 

 
 
3. Martin’s weights 
 
 Some years ago, the first author had the good fortune of meeting up with Dr. Ralph R. 
Martin who was visiting the campus that the first author was attached to.  At that time, the first 
author was involved in a 3-dimensional scattered data interpolation project and as raw data was 
involved, the estimation of partial derivatives became necessary.  Martin was visiting the laboratory 
where the project was conducted and he suggested that instead of using the reciprocals of the areas 
of the base triangles as weights, we should use the reciprocals of the perpendicular heights of the 
base triangles, taken from the points in question to the opposite sides, as weights.  Martin’s 
reasoning was that since base distances played an important role in determining the weights in the 
2-dimensional univariate case, base distances should also play the same role in the 3-dimensional 
bivariate case.  If a particular triangle is long or thin, the area of the triangle is small but the height 
is great.  Similarly, a short but fat triangle has a bigger area but a lesser height.  Therefore, the 
height of the base triangle should be a more proper analogy to the base distance compared to the 
area of the base triangle.  This can be observed in Figures 4(a) and 4(b) that show the height of each 
triangle from the point to the opposite side. 
 
 
 
 
 
 
 
 
 
 

Figure 4(a)                                                                Figure 4(b) 
 
 

Figures 4(a) & 4(b).  The height of each triangle from the point in question to the opposite side. 
 

 •  

 •  



  

 A triangle  has three perpendicular heights thereby giving three weights.  For the estimation 
of partial derivatives of the inner points, the considered weight from each triangle is the reciprocal 
of the height from the point in question to the opposite side (see Figure 5).  For boundary points, 
where we have to also consider each adjoining triangle (see Figure 6), we propose that for the 
adjoining triangle, the perpendicular distance from the common boundary to the opposite vertex 
shall be the base distance taken into consideration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Rewriting equations (11) and (12) with Martin’s weights, we have for the estimation of 
partial derivatives at the inner points 
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and for the estimation of partial derivatives at the boundary points 
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where h symbolise the base triangular heights and g symbolise the partial derivatives of the 
triangular planes. 
 
 
 
 
 
 

 •  
k 

 •  
j 

Figure 5.  The heights of triangles with 
point k as a vertex. 

Figure 6.  The heights of triangles with point j as a 
vertex together with heights of the adjoining triangles. 



  

4. Results and Conclusion 
 
 We tested the partial derivative estimation methods mentioned above using two well-known 
test functions, i.e. 
 
1.  Franke’s exponential function. 
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2.  Saddle function. 
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 The test domain that we employ here is the one used by Whelan (1984) which is a unit 
square with 36 points taken from within the square ( see Table 1).  These 36 points were triangulated 
using Delaunay’s triangulation method with the resulting triangles shown in Figure 7. 
 

 
Table 1.  Planar data points used in our tests. 

 

Coordinates Coordinates Point No. 
x y 

Point No. 
x y 

1 0.00 0.00 19 0.80 0.85 
2 0.50 0.00 20 0.85 0.65 
3 1.00 0.00 21 1.00 0.50 
4 0.15 0.15 22 1.00 1.00 
5 0.70 0.15 23 0.50 1.00 
6 0.50 0.20 24 0.10 0.85 
7 0.25 0.30 25 0.00 1.00 
8 0.40 0.30 26 0.25 0.00 
9 0.75 0.40 27 0.75 0.00 
10 0.85 0.25 28 0.25 1.00 
11 0.55 0.45 29 0.00 0.25 
12 0.00 0.50 30 0.75 1.00 
13 0.20 0.45 31 0.00 0.75 
14 0.45 0.55 32 1.00 0.25 
15 0.60 0.65 33 1.00 0.75 
16 0.25 0.70 34 0.19 0.19 
17 0.40 0.80 35 0.32 0.75 
18 0.65 0.75 36 0.79 0.46 

 



  

 
 

Figure 7.  A Delaunay triangulation of the 36 data points in Table 1. 

 
 
 The partial derivatives of both test functions at the 36 data points were estimated using both 
weights suggested by Goodman et al. and Martin.  The results are shown in the Appendices that can 
be found in the electronic version of this paper.  For a quick comparison between the two weights, 
we table the maximum absolute errors and the mean absolute errors in Table 2.  
 

Table 2.  A comparison of the test results. 
 

Max. abs. error Mean abs. error 
Function and weight used. 

dx

dF  
dy
dF  

dx

dF  
dy
dF  

Franke’s exponential function, weight =
∆
1

 0.972078 1.138082 0.340011 0.391382 

Franke’s exponential function, weight = 
h

1  0.835827 1.124918 0.311411 0.375929 

Saddle function, weight =
∆
1  0.298376 0.380398 0.084480 0.107790 

Saddle function, weight =
h

1  0.290634 0.408416 0.081809 0.103958 

 
 

 Although Table 2 shows that the maximum absolute error of the estimated derivative 
dy

dF
 of 

the saddle function increases when using Martin’s weights, all the other errors importantly the mean 
absolute errors decrease showing that Martin’s weights do result in an improvement in the 
estimation of partial derivatives compared to Goodman et al.’s weights.  Using Martin’s weights 
requires extra calculations because there are three perpendicular heights in each base triangle but 
the extra programming required is not much of an extra burden and the difference in computation 
time too is hardly noticeable. 



  

5. Algorithm to estimate partial derivatives for scattered data points 
 
 Below, we present a pseudo program to estimate partial derivatives for scattered data points 
that we hope readers can easily implement in real code. 
 
    Begin 

Input data points; 
Triangulate data points; 
For each triangle 

         begin 
Calculate the derivatives of the triangular plane; 
Calculate the three perpendicular heights of the triangle projected onto the xy-plane; 

         end; 
For each data point i 

         begin 
Numerator for derivative with respect to x  = 0; 
Numerator for derivative with respect to y = 0; 
Denominator = 0; 
For each triangle j 

  If point i is a vertex of triangle j 
           begin 
    If point i is a boundary point 

  For each triangle k 
   If triangle k is adjoining triangle j 

Add values from equation (14) to both 
numerators with respect to x and y; 

    If point i is an inner point 
Add values from equation (13) to both numerators with 
respect to x and y; 

Add values from either equation (13) or equation (14) to denominator; 
       end; 

Estimate both partial derivatives by respective numerator/denominator; 
         end; 
    End. 
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