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Abstract 
 
      Lighting calculations are commonly done to evaluate the efficiency of a lighting system. One of 
the important parameters in establishing a luminaire’s efficiency is the total flux emitted from a 
luminaire or light source. The luminous flux of a light source can be calculated from readily 
available data of the measurements of its Luminous Intensity Distribution Function, in the form of 
table of values function. The method currently used in the lighting industry is by means of a semi-
manual method of computation and summation of flux at discrete angular steps of luminous 
intensity under measurement and the use of zonal constants.  
      In this paper we explore the use of mathematical techniques through software to generate a 
scheme that provides a more automated and more accurate way of computing the luminous flux. 
We explore the use of cubic spline interpolation and of symbolic mathematics in a hybrid numeric-
analytic integration method, implemented in MATLAB environment.  
     We also conduct some numerical experiments to verify the efficiency and accuracy of the new 
method for different simulated light intensity distribution function and compare it to results based 
on current practices.  
 
 
1. Introduction 
 
     In the field of illumination and display engineering, the quantification of light output is an 
important activity as it enables the computation of the efficiency of a light source for illumination, 
indication or display. The quantity for light is luminous flux, with units in lumens, while the 
quantity for the measure of the concentration of light flux is the luminous intensity. 

  

mailto:hclow@cs.usm.my
mailto:ahyahya@cs.usm.my


The relationship between the luminous flux and luminous intensity is given by the flux equation [1]: 

�
�

�� dIv�      ………………………………………………..….    (1) 

where   Iv is the luminous intensity, in candela 
            is the luminous flux, in lumens �

    � is the solid angle subtended in space, in steradians. 
 

     By definition the luminous flux is the integration of the luminous intensity distribution over the 
solid angle subtended by the light source. In practice the flux is commonly calculated from the 
luminous intensity distribution of the light emitting component or luminaire.[2], [3] The luminous 
intensities are measured at various positions in space and its distribution tabulated in the form of 
discrete data. 
     Per the current industrial practice, the Zonal Lumen Method is used to calculate the total 
luminous flux [2,4]. This method computes for the flux without any interpolation for the given 
discrete data. The intensity is measured at the mid-zone to represent the zonal average, and the total 
flux is the product of intensities with the respective zonal constants. The zonal constant is a 
parameter that relates to the solid angle of the light radiated in the zone. (See Table 1) 
 

Table 1 
Zonal Lumen Method For Flux Computation: 

An Example 
Zone 
Limit 

(degrees) 

Zonal 
Constant, 

Cz(x) 

Mid-point 
Intensity, 

Iv(x) 

Zonal Flux   = 
Iv(x) . Cz(x) 

0-10 0.0955 1.7103 0.1633 
10-20 0.2835 1.3455 0.3814 
20-30 0.4629 0.9566 0.4428 
30-40 0.6282 0.7316 0.4596 
40-50 0.7744 0.7330 0.5676 
50-60 0.8972 0.5435 0.4876 
60-70 0.9926 0.3383 0.3358 
70-80 1.0579 0.2857 0.3023 
80-90 1.0911 0.2304 0.2514 

  Total Flux 3.3916 
 
     Tables of Zonal Constants are listed in existing lighting handbooks and literatures for the 
convenience of computation for the end user, with various step sizes for the angular zones catering 
to light emission for beams with narrow angle to beams with wide angle.[2,5] As more measurement 
points are taken, the accuracy of the total computed flux increases but this comes at a cost. On the 
other hand, if too few measurements are taken, it may fail to capture the true radiation pattern of the 
light source. 
     For the purpose of this paper, we explore luminaires having symmetrical luminous intensity 
distribution about the beam axis, which forms a large class of light sources. Examples of such 
distributions are illustrated in Figure 3a, 4a and 5a. The luminous intensity distribution is typically 

  



plotted in Cartesian or Polar coordinates, and is derived from intensity measurement data at discrete 
angular positions with respect to the beam axis. Typical number of the light beam characterization 
measurements varies from tens to about a hundred data points, depending on the complexity of the 
beam pattern. 
 
 
2. Luminous Flux Computation: Basis of Zonal Lumen Method 
 
     For a light source with intensity distribution symmetrical about the beam axis, the luminous flux 
equation, i.e. Equation (1), reduces to one variable, in �, the angular position in which the luminous 
intensity is measured with respect the axis of the light beam, and is given by 
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where  �          is the angle measured from the axis of symmetry of the beam, and 
)(�vI    is the luminous intensity distribution function, represented by a table of values. 

 
Equation (2) in its discrete form becomes 
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            n        is the number of steps 
            is the Zonal Constant )(�mC

 
     Equation (3) in its discrete form is the basis for the Zonal Lumen Method, as described in 
photometry and illumination engineering literatures. [2,4]. The zonal constant for a luminaire with 
axis of symmetry about the beam axis, is given by: 

]cos[cos2)( 1��� mmmC ����    …………………………………….…………..(4) 
 

where   m   is the step sequence, and 
m�  is the angle of measurement (with respect to the beam’s axis of symmetry)   

      
 
3. Optimal Method For Flux Computation – A Discussion 
 

     The flux integral, �
2

0
.sin).(2
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���� dI v , is an unknown function. Per current lighting industry 

practice, the intensity distribution function, Iv(�),  is determined approximately by sampling the 
beam intensity at discrete steps of angular position, �, with respect to the light beam’s axis. The 
angular positions are chosen, for the convenience of Zonal Lumen Method of computation, to 
match the published Zonal Constants tables. The positions of measurement are typically evenly 
spaced, starting 0� to 90� for symmetrical sources. The step size ranges from 0.1� for narrow angle 
beams to 10� for very wide angle beams.  

  



     The position of measurements would not have to be carried out at evenly spaced points, if one is 
not constrained by the Method of Zonal Lumen and the use of the Zonal Constant tables. The user 
will then have the flexibility of sampling more measurements near positions where the beam 
intensity is known to be highly irregular. 
     Our objective is to arrive at a method that is preferably be able to handle both evenly and 
unevenly spaced data. The spacing of the data refers to the angular position so chosen, �. 
     For our consideration, we can broadly divide the methods available at our disposal to evaluate 
the flux integral as follows: 
    a) Numerical Integration 
    b) Analytic Integration 
    c) Hybrid Numeric-Analytic Method 
 
     The flux integrand, for convenience, is now restated as h(x) = f(x).sin x, where f(x) is unknown 
and is represented by sampled discrete data which is deemed to be exact. For this reason, it is 
preferable to interpolate the discrete data rather than using least squares fitting methods, for which 
the curve do not necessarily pass through the discrete data points. 
 
a) Numerical Integration. 
      The classical numerical integration, also called quadratures, employ the strategy of 
approximating the curve y = f(x) with a simpler function for easy integration. 
      Newton Cotes rules are obtained by approximating the function f(x) with polynomial equations 
of degree n-1 to interpolate for n equally spaced data points i.e. the Trapezoidal Rule using linear 
function, Simpson’s Rule using quadratics, Simpson’s 3/8 rule using cubic polynomials and so on. 
The Composite Rule employs the strategy of dividing the unknown function into N segments, and 
applying the Newton-Cote rules to each segment and summing it up. 
      As the flux integrand is composed of a product of two functions i.e. an unknown f(x) and a 
trigonometric term, sin x, it is not easily amenable to computation using the Newton Cotes rule. 
Further, the requirement for evenly spaced data by the Newton Cotes rule put a constraint on flux 
computation for given experimental data that is not evenly spaced. 
     Gaussian quadratures are normally used for analytic functions but it has two features that make 
it unsuitable for evaluating the flux integral. Firstly, the flux integral is composed of discrete data 
but the Gaussian quadrature requires that the underlying function be known in order to evaluate the 
function at particular abscissas. This means that one have to interpolate between the points using an 
approximation analytic function, and use that function for piecewise composite Gaussian 
quadrature computation. Secondly it requires pre-selected abscissas and weights for approximation 
of the function under consideration. However, for flux measurements we have given discrete data 
that do not necessarily coincide with the abscissas required. As such, Gaussian Quadratures are not 
considered for evaluating the flux integral.  
    
 b) Analytic Integration. 
     Analytic integration is not directly applicable to the flux integrand until that integrand is reduced 
to an analytic expression. This is possible by reconstructing piecewise analytic functions, as the 
unknown function, f(x) in the flux integrand f(x).sinx is represented by the discrete intensity data 
and can be approximated using polynomial interpolating functions. The task now is to select the 

  



most fitting interpolating function to approximate as closely as possible the underlying function of 
the discrete data set. 
     Some of the characteristics of the curve of the unknown function f(x), representing the luminous 
intensity distribution of light sources, that is desirable to be reproduced in the end analytic function 
are: 
  i) It is continuous. 
 ii) It has continuous first and second derivatives with no singularities. 
iii) It may have many maxima and minima in it. 
iv) Its shape may be mainly concave, or mainly convex, or a mixture of both. 
 v) It may have small local perturbations. 
 
Polynomial Interpolation of f(x). 
     For interpolation of discrete data, we have the following interpolation schemes available for 
consideration: 
   i) Single polynomial, derived from either Lagrange Basis or Newton Basis. 
  ii) Piecewise linear interpolation. 
 iii) Piecewise quadratic interpolation. 
 iv) Piecewise Cubic Hermite polynomial 
 v ) Piecewise Cubic Spline polynomial. 
 
     For single polynomial interpolation function, there is only one unique polynomial of degree n-1, 
passing through n nodes. Thus the polynomial derived from the Lagrange basis or from the Newton 
basis are of necessity the one and same polynomial despite its differing origin of derivation. Proof 
of this can be found in Conte and De Boor.[6] 
     The typical number of data points for determining the shape of the intensity distribution run into 
tens to about a hundred. As such, a single polynomial interpolation will require such a high order 
polynomial that it is unsuitable. It is a well-known phenomenon that high order polynomials tend to 
be highly unstable and can generate wild oscillation between data points. As such, single 
polynomial is not suitable for interpolating the discrete intensity data.[7] 
     Piecewise linear interpolation truncates the actual underlying function, and depending on the 
convexity and the number of extrema present in the function, the truncation error of linear 
interpolation can fluctuate wildly, sometimes self-compensating at other times accumulative. An 
example is a function that is a single concave or single convex shape. It fails to approximate 
curvatures well. Further, it suffers from lack of continuity in the first derivative at the nodes or 
knots and is visibly unnatural looking. 
     Mathematica’s Interpolation function applied to discrete data set produces an 
InterpolationFunction object based on divided differences to construct Lagrange or Hermite 
interpolating polynomials. However, use of Hermite interpolating polynomial presumes a 
knowledge of the first derivative of h(x) = f(x).sinx,  otherwise some further means of 
approximation is needed to estimate the first derivative at the knot from the set of discrete data.  
Thus the Hermite interpolating function is not suitable for interpolating discrete data for flux 
computation. 
     Piecewise quadratic again lacks continuity in the first derivative at the knots and causes the 
curve to deviate from the true underlying function, and is not much better than its linear 
counterpart. 

  



     Piecewise cubic polynomials are much more useful, and in this regard the piecewise cubic 
Hermite polynomial have the property of agreeing in the function and its first derivative at each of 
the knots. This enable the piecewise cubic Hermite polynomials to be coupled together with a 
smooth joint, unlike the standard cubic polynomial, quadratic or the linear interpolating functions. 
But as said earlier, Hermite cubic polynomial requires prior knowledge of the first derivative at the 
knots. 
    Piecewise cubic spline polynomials extend the requirement to having the second derivative at 
each of the knot to agree with the two adjacent cubics. This provides another degree of  
“smoothness” to the joint. Thus for cubic spline, f ’i(xi+1)=f’i+1(xi+1), and f’’i(xi+1)=f’’i+1(xi+1). These 
conditions, plus the natural end spline conditions where the second derivatives equals to zero, and 
enforcing the continuity at the joints for the function of the curve gives the necessary 4(n-1) 
simultaneous equations to solve for 4(n-1) unknown coefficients of the n-1 spline segments, for n 
given nodes.[7,8,9] 
     The cubic spline polynomial interpolation, by virtue of its requirement for continuity at the 
knots to agree up to the second derivative, is able to provide the smoothest reproduction of the 
curve that represents the underlying function of the luminous intensity data set, over and against the 
other interpolation schemes. 
 
c) Hybrid Numeric-Analytic Method. 
    We have seen that the piecewise cubic spline polynomial can reconstruct and approximate 
closely the underlying function for the flux integrand, so by carrying out analytic integration of the 
piecewise analytic function and summing up the values of the piecewise integrals we would arrive 
at the total flux. This composite method of summation of the pieces is numerical in nature, while 
the integration portion is analytic in nature. The analytic interpolating function is an approximation 
procedure, and so we end up using a hybrid of numerical and analytic techniques to compute the 
total flux in order to have an optimal method of computing the total flux. (See Figure 1 and Figure 
2.) As the given data set is discrete, we can never know the true value of the integral and the closest 
we can get to is to approximate as closely as possible the curve forming the flux’s integrand. 
 

      
            Figure 1   Product of Functions                     Figure 2   Piece-wise Analytic Integration 
 

  



4. Piece-wise Integration of the Luminous Flux Integral 
 
With the luminous intensity function reconstructed from its discrete data set, the intensity function 
is now represented by piece-wise polynomials i.e. 
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 where  i   is the ith piecewise polynomial of the intensity function with m segments. 
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Thus the Total Luminous Flux can be computed in a hybrid of numerical and analytic integration. 
This can be implemented in a mathematical software environment readily. Weighing the trade-off 
between computational efficiency and the oscillatory nature of higher order polynomials, we 
choose as a compromise n=4 i.e. a cubic polynomial for the spline.[7] We then have the particular 
analytic solution for the Total Luminous Flux as 
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   In MATLAB, the coefficients for the splines segments are returned simply by calling the unmkpp 
function, e.g. 
     x= [0 1 2 3 4 5 6 7 8 9 10]       �Data input  
     y=[ 0 4 3 5 8 6 5 4 3 1 2 0]       
   pp=spline (x,[0 y 0])                  � generates the cubic spline polynomials, 0 end-slopes specified. 
   [breaks,coefs, m,n,d]=unmkpp(pp)   �extracts and prints information related to the cubic spline 
                                                                polynomial, including the coefficients. 
 
Letting the unknown function f12(x) be the cubic spline polynomial between knot 1 and 2,  
       f12(x) = a + bx + cx2 + dx3, where a, b, c, and d represents the coefficients’ numerical values 

  



Then  
      h12(x) = f12(x). sin x  
                = (a + bx + cx2 + dx3).sin x, where h12 represent spline segment between knot 1 and 2. 
            
The expression, (a + bx + cx2 + dx3).sin x,  can be symbolically integrated and evaluated in 
MATLAB’s Symbolic Math Toolbox  
i.e.  
       Syms x      �Declares symbolic variable x 
      Flux = int ((a + bx + cx2 + dx3).sin x, limit1, limit2) 
 
and giving the solution in its analytic form, or value if the limits are supplied:: 
      Flux =  [(a1 +a2.x + a3.x2 ).sinx + (b1 + b2.x + b3x2+ b4x3.)cos x],  where ai, bi are constants. 
 
Summing over all the segments gives us the total flux. 
 
 
5. Numerical Experiments and Results 
 
      The Hybrid Numeric-Analytic Method is tested on several Luminous Intensity Distribution 
Functions (LIDF), and three LIDFs are reproduced here, represented by LIDF A, B and C (see Fig 
3a, 4a and 5a, respectively).  
      LIDF A and B are actual measurements of some luminaires, while LIDF C is simulated using a 
known function that closely resembles a typical luminaire with smooth LIDF i.e. Runge’s 
function[8]. LIDF A, B and C represent typical luminous intensity distributions where the intensities 
peaked at the beam’s axis of symmetry, and reduces in intensity as the angle of the detector to the 
beam axis is increased, with the intensity dropping down to close to zero at a position perpendicular 
to the beam’s axis. They also represent the typical distribution of luminaires, some with a 
monotonically decreasing function, represented by LIDF C, and some with localized irregularities 
represented by LIDF A and B. 
     The table of values for the LIDFs of these lamps has a total of 90 intensity values measured at 
an interval of 1 degree over one side of the symmetrical distribution about the lamp beam’s axis.  
The test is carried out over sets of data with 18, 30, 45 and 90 measurements evenly divided over 
the 90 degrees range of measurement, and the total flux measurement is compared for the Numeric-
Analytic Method against the Zonal Lumen Method. 
     As the luminous intensity distributions are represented by a finite number of intensity 
measurements, the value of the Total Luminous Flux will never be known exactly. However the 
nature of most luminaires, by virtue of its design and construction, is such that their LIDFs’ 
irregular features are captured with about a hundred measurements for each plane of measurement. 
For beams with known rotational symmetry, only one plane of measurement is necessary. As such, 
the Total Luminous Flux computed using Zonal Lumen Method or Numeric-Analytic Method will 
tend to converge to close to exact value when the number of measurements used is about 100 or     

  



             
                  Fig 3a   LIDF A                   Fig 3b   LIDF A - Computed Flux Vs No. of Data Points 
 
 

             
                  Fig 4a  LIDF B                          Fig 4b   LIDF B - Computed Flux Vs No. of Data Points 
 

             
                    Fig 5a LIDF C            Fig 5b LIDF C - Computed Flux Vs No. of Data Points 

  



more.The goal of this alternative computation using the Hybrid Numeric-Analytic Method is to 
provide a more economical means to achieve similar accuracies as the Zonal Lumen Method but 
using fewer data points.      
    The results of the numerical experiments are shown in Fig 3b, 4b and 5b, comparing the Zonal 
Lumen Method applied to the LIDF and the Trigonometric Function of Zonal Constant) with the 
Hybrid Numeric-Analytic Method. In general the Hybrid Numeric-Analytic Method converges to 
the exact Total Luminous Flux faster than the Zonal Lumen Method. 
 
 
6. Conclusion 
 
     The Hybrid Numeric-Analytic Method in general is more economical in needing fewer 
measurement points as compared to the Zonal Lumen Method to approximate the exact Total 
Luminous Flux. It demonstrates to us that a combination of hybrid numerical and analytic methods 
(i.e. recovery of analytic functions from a table of values by piecewise cubic spline interpolation, 
and integration of analytic functions by symbolic mathematics) through the use of current 
mathematical software can be a powerful tool to enhance considerably the purely numerical 
methods. This is illustrated in the case of flux computation in the lighting industry and likely in 
other fields as well. 
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