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Abstract 

 
Recently the Tchebichef and Krawtchouk moments have been introduced and studied 
by Mukundan, Ong and Lee ([1], [2]) and Yap, Raveendran and Ong ([3]) 
respectively. These moments have been shown to be useful as pattern features in the 
analysis of two-dimensional images. An advantage of these moments is that their 
implementation does not involve any numerical approximation, since the basis set is 
discrete in the domain of the discretized image coordinate space. This paper 
introduces a new set of orthogonal moment functions, the Hahn moments, based on 
the discrete Hahn orthogonal polynomials. The Hahn moments generalize the 
Tchebichef and Krawtchouk moments. The paper also details a number of theoretical 
properties of the Hahn moments useful in feature representation. In particular, 
limiting and Bayesian connections between the weighting functions of these moments 
are examined. 
 
1. Introduction 

In image analysis moment functions are used as shape descriptors in various 
applications   like invariant pattern recognition, object classification and identification 
and robot vision. For an image intensity function f(x, y), moment functions �pq of 
order (p+q) are defined as follows: 

 �pq = �

yx
�� pq(x,y) f(x, y) dx dy,                         p, q = 0,1,2,3....     

where �pq(x,y)  is a continuous function of (x, y) known as the  moment weighting 
kernel  or the  basis set. Hu [4] introduced the geometric moment functions given by
 �pq(x,y)  = xp yq         

in order to derive shape descriptors invariant with respect to image plane 
transformations. Teague [5] proposed the Legendre and Zernike moments with the 
corresponding orthogonal functions as kernels.  These orthogonal moments have 
better feature representation capabilities and are also less sensitive to image noise 



compared to geometric moments. An important feature of an orthogonal moment set 
is that information redundancy is a minimum.   

However, the computation of orthogonal moments of images based upon 
continuous kernels possess two problems [6]: (a) discrete approximation of the 
continuous integrals (1), and (b) the normalization of image coordinate space to the 
domain of the orthogonal polynomials, which is either the range  [-1, 1], or the 
interior of a unit circle. These difficulties motivated Mukundan, Ong and Lee ([1], 
[2]) and Yap, Raveendran and Ong ([3]) to consider discrete orthogonal polynomials 
as the basis functions for image moments. These authors introduced the Tchebichef 
moments and the Krawtchouk moments respectively. 
 

The present paper introduces a new set of moment functions based on the 
Hahn orthogonal polynomials. The Hahn moments generalize the Tchebichef and 
Krawtchouk moments. In section 2 the Tchebichef and Krawtchouk moments are 
reviewed. The ensuing section introduces Hahn moments and a number of theoretical 
properties useful in feature representation. In particular, limiting and Bayesian 
connections between the weight functions of these moments and error analysis are 
examined. 
 
 
2. Tchebichef and Krawtchouk Moments 
 

2.1 Tchebichef Polynomials and Tchebichef Moments 

The classical Tchebichef polynomials [3] are defined as 
 )t      n, x, y = 0,1, 2, . .N�1.          (1) 1;1,1;1,,()1()( 23 NnxnFNx nn ������

where (a)k is the Pochhammer symbol given by 

(a)k =  a (a+1) (a+2) …(a+k�1),                (2) 

and   3F2(.)   is the generalized hypergeometric function, 
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The Tchebichef polynomials satisfy the orthogonality property 
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and have the following recurrence relation: 
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1n � 0
           n =1, 2…, N�1.          (5) 

We define the scaled Tchebichef polynomials as 
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where tn(x)  is the classical Tchebichef polynomial of order n, given by (1),  and   
�(n,N)  is a suitable constant which is independent of  x. 
 

The Tchebichef moments are defined as 
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The corresponding inverse moment transform is given by 

 f(x, y)  =  ,  x, y = 0, 1, 2, …N�1.            (7) T t x t ymn
n
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2.2 Krawtchouk polynomials and Krawtchouk Moments 
 

The nth-order classical Krawtchouk polynomials are given by 
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corresponding to the weight function  
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Another definition for Krawtchouk polynomials is given by Koekoek et al [7] as: 
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and the orthogonality  condition is 
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where n, m=0, 1, 2, …, N 
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The weighted Krawtchouk polynomials � �� �NpxK n ,;  is defined by setting 
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such that the orthogonality condition becomes 
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For an image intensity function � �yxf , , the definition of Krawtchouk moments of 
order � �mn �  in terms of weighted Krawtchouk polynomials [3] (see also [1], p.1359) 
are given as 
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3. Hahn Polynomials and Moments 
 
3.1 Hahn Polynomials 

 
The nth-order classical Hahn polynomials [8] are given by 
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However, in order to be in line with the development of the Krawtchouk moments, the 
following simpler definition [7] is adopted: 
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with weight function 
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The orthogonality  condition is given by 
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Three-term recurrence relation and other properties are found in [7] and [8]. 
 
3.2 Hahn Moments 
 

Following the definition of the Krawtchouk moments of order � �mn �  in 
terms of weighted Krawtchouk polynomials (13), we define the Hahn moments of 
order � �mn �  as 
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where  
� � � � � � � �1,,;1,,;/1,,;1,,; ����� NxQNmNxwNxQ mm ���������

                 



is the weighted Hahn polynomial. 
 
4. Definition of Orthogonal Moments with respect to Weighted Image 
Intensity Function 
 

It is of interest to note that in definition (16) (respectively (13))of the Hahn 
(Krawtchouk) moments the square root of the negative hypergeometric (binomial) 
weight function is used as a weight for the Hahn (Krawtchouk) polynomials.  In 
contrast, for the Legendre and Zernike moments, the weight is unity. Yap et al ([3]) 
have demonstrated the role of the binomial weight in feature extraction by allowing 
the image to be focused at different sections according to varying values of the 
binomial parameter p. For instance, for the case of  p=1/2, the binomial weight (9) is 
symmetric and the image is focused at the centre. 

 
Note that if m=n=0 in (16), we have  
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and this may be interpreted as the total  weighted image intensity function. 
Alternatively, consider  

 
            (18) 
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which is easier to handle. An implication of (18) is that the orthogonal moments can 
be defined with respect to the weighted image intensity instead of the original image 
intensity. Therefore, 
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where  
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5. Connection between the Normalized Weight Functions and 
Limiting Cases 
 
5.1 Connection between the Normalized Weight Functions 
 
 In this section we shall examine the connection between the weight functions 
for the three classes of orthogonal moments according to the variation of the binomial 
parameter p. This will be done with respect to the normalized weight functions. 
 
Definition: The normalized form of the discrete weight function is given by 

 
)(xw

��

x

xwxwxw )(/)()(* .



Since  and , the normalized weight function is a probability 

mass function. Systems of orthogonal polynomials are constructed or defined with 
respect to normalized or non normalized weight functions. The normalized weight 
functions for the three systems of orthogonal polynomials are tabulated below. 
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(negative inverse hypergeometric) 

 
 
Table 1. Normalized Weight Functions for Tchebichef, Krawtchouk  and Hahn 
polynomials 
 
Note that the normalized weight functions are well-known probability mass functions. 
The Hahn polynomials, with respect to the normalized weight , have been 
considered by Weber and Erdelyi [9]. It is straightforward to recast formulae for the 
orthogonal polynomials in terms of the normalized weight functions. For instance, the 
orthogonality condition (4) of the Tchebichef polynomials may be written as  
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where   is the discrete uniform probability mass function (pmf). NNw /1)(* �

 
Consider the weighted image intensity function (of the form (19)) with respect 

to the binomial weight with two parameters N and p. Since N represents the number of 
pixels, p is the only unknown parameter in the binomial weight. Information about p 
may be considered in a Bayesian context, by regarding p as a random variable. A 
natural prior distribution for the binomial parameter p is the beta distribution having 
probability density function 
  ,  � � � ��

�� ,/1)( 11 Bpppf ��

�� � 10 �� p
where . The marginal (or prior predictive) distribution is � � � � � � � ������� ����� /,B
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on employing the formula 
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It is easy to see that (21) is the normalized weight in Table 1 if we let 
���� ���� 1,1 . 

  
If 1�� and 1�� ,  is the discrete uniform distribution. In this 

case, , the continuous uniform distribution over the interval . 
Thus a continuous uniform prior for the binomial parameter p leads to the discrete 
uniform prior predictive, and the corresponding Tchebichef polynomials and 
orthogonal moments. A beta prior gives the negative inverse hypergeometric 
distribution resulting in the Hahn polynomials and moments. 
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1�0,1) �( � ppf � �1,0

 
5.2 Limiting Cases and Similarity between the Orthogonal Moments 
 

Mukundan et al [1] commented that the remarkable similarity between the 
values of Tchebichef moments and Legendre moments is a consequence of the 
limiting relation 

� � � � ,10,12lim ����
�

��

xxPNxtN nn
n

N
             (22) 

where is the Legendre polynomial. We now discuss some limiting results 
involving the Hahn,  Krawtchouk and Tchebichef moments.  
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A well-known limiting form of the Hahn polynomial is as follows: 

 
If  rqrp �� �� , and 0 , then . 11 ���� qp � � � NpxkNqrprxQ nnr

,;,,;lim �

��

�

�

 
Furthermore, under these conditions the Hahn weight function  
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 It may be inferred that for large values of � and �  the Hahn moments should be very 
similar to the Krawtchouk moments. On the other hand, the discussion in the 
preceding section shows that as � and �  both tend to zero (that is, they are very 
small), the Hahn moments approach the Tchebichef moments. A consequence of these 
results is that the more general class of Hahn orthogonal moments may be used and 
the magnitude of the values of � and � will determine the appropriate class of 
orthogonal moments, Tchebichef, Krawtchouk or Hahn.

  
A generalization of (22) is the following limiting result of Weber and Erdelyi 

[9]: 
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is the Jacobi polynomial. The Legendre polynomial is a special case if 0,0 �� �� . 
 



6. Error Analysis  
 

In image reconstruction, the orthogonal moments are used up to an order t:  
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The error in the reconstruction due to the truncation may be measured by 
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The following result gives a bound for the truncation error (25) which is useful to 
gauge the accuracy of the image reconstruction. 
 
Result. 
For 2/1},max{ ���� , the truncation error has the following bound 
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where   is the Jacobi polynomial defined by (24). � � � �xPn
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Proof. 
Consider equation (25) after substituting for and : � yxf , � � �yxf ,ˆ
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It is straightforward to prove the following result: 
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If (21) is used in this result we get 
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Application of the well known inequality for the Jacobi polynomials 
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and the normalization for the beta distribution, namely, 
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lead to the result (26).         � 
 



 The sharpness of the bound for the truncation error and related measures of the 
performance of the image reconstruction will be considered elsewhere. 
 
7. Summary and Concluding Remarks 
 
 In this paper we have introduced the orthogonal Hahn moments as pattern 
features in the analysis of two-dimensional images. Connections between the weight 
functions of the Hahn, Krawtchouk and Tchebichef polynomials with respect to the 
weighted image intensity function and limiting cases have been examined. A bound 
for the truncation error has been derived to assess the accuracy of the image 
reconstruction. Since the Hahn polynomials include many orthogonal polynomials as 
limiting cases, the Hahn moments will constitute a general class of orthogonal 
moments useful in image analysis. Experimental results and local feature extractions 
by the weighted image intensity function will be discussed in a separate paper. 
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