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Abstract. Training of artificial neural networks is normally a time consuming task due to iterative 
search imposed by the implicit nonlinearity of the network behavior. To tackle the supervised 
learning of multilayer feed forward neural networks, the backpropagation algorithm has been 
proven to be one of the most successful neural network algorithm. Although backpropagation  
training has proved to be efficient in many applications, its convergence tends to be very slow and 
it often yields suboptimal solutions. Standard backpropagation, as with many gradient based 
optimizaton methods converges slowly as neural networks problems become larger and more 
complex. 

This paper concentrates on conjugate gradient-based training methods originated from 
optimization theory, namely, Fletcher Reeves conjugate gradient, Polak-Ribierre conjugate 
gradient and Powell-Beale restart. The behavior of these training methods on several real life 
application problems is reported, thereby illuminating convergence and robustness. The real world 
problems which have been considered include Classification of Iris Plant, Gender Classification of 
Crabs and Classification of Face Images. By using these algorithms, the convergence rate can be 
improved immensely with only a minimal increase in the complexity. Numerical evidence shows that 
these methods do perform well. (ATCMA264) 
 
1 Introduction 
 
The back propagation method consists three main layers-input layers, output layers and hidden 
layers. The input nodes constitute the first layer and the output nodes constitute the output layer 
while the remaining nodes constitute hidden layers of the network. The input vector is presented to 
the input layer and the signals are propagated forward to the first hidden layer; the resulting output 
of the first hidden layer is in turn applied to the next hidden layer and the same procedure continues 
for the rest of the network. The objective of the learning process is to adjust the free parameters (i.e. 
synaptic weights and thresholds) of the network so as to minimize . avξ
 The back propagation method uses the gradient or steepest descent method to perform the 
minimization where the weights are updated (adjusted) in accordance with the respective errors 
computed for each pattern to the network. The error signal  at the output of neuron  at 
iteration  is defined by 
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where  and  is the desired and the actual response of neuron  at iteration  
respectively. 
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 The instantaneous value ξ  of the sum of squared errors over all neurons is written as  )(n
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where  includes all the neurons in the output layer of the network.  Lastly, the average squared 
error over the total number of patterns  is given by 
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 By using gradient descent method to perform the minimization, the correction  applied 
to the synaptic weight  is proportional to the instantaneous gradient ∂   
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The gradient  determines the direction of search in weight space for the synaptic 
weight . 
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where η  is the learning rate parameter. 
 
2 Algorithms 
 
In Evans [1], the reasons for the slow convergence of the backpropagation have been discussed. To 
date, many techniques have been proposed to deal with the inherent problems of backpropagation. 
These techniques can be divided roughly into two main categories; those referred to as global 
techniques that use global knowledge of the state of the entire network, such as the direction of the 
overall weight update vector. Most of these techniques have their roots in the well-explained 
domain of optimization theory. The simplest is a first-order method that uses the steepest-descent 
(SD) direction [2]. An alternative is the conjugate gradient (CG) method, which modifies the SD 
direction by conjugating it with the previously used direction [3]. 
 In contrast, local adaptation strategies are based on weight specific information only, such as the 
temporal behavior of the partial derivative of the current weight. These include the Delta-Bar-Delta 
method [4], Quickprop [5] and Rprop [6]. 
 
2.1 Conjugate Gradient Methods  
 
In optimization theory, the conjugate gradient method has been known since Fletcher and Reeves 
[7]. Leonard and Kramer [3] introduced the original Fletcher – Reeves algorithm in the field of 
neural network research. Conjugate gradient does not require the calculation of second derivatives 
but, yet, it still has the quadratic convergence property. 

Let us assume that the error function is quadratic in w, that is, it can be approximated to a 
quadratic function as  
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where A is a symmetric positive definite matrix.  Let p(n) denote the direction vector at iteration n 
of the algorithm. Then the weight vector of the network is updated in accordance with the rule 
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where η(n) is the learning-rate parameter.  Suppose the initial direction of minimization, which is 
started at w(0) is p(0) which is set equal to the negative gradient vector g(n) at the initial point n=0; 
that is, 
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A line minimization in the direction of p(0) results in a gradient at w(1) perpendicular to p(0).  In 
general,  
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Because we do not want to spoil this minimization step in subsequent minimizations, the gradient of 
subsequent points of minimization must also be perpendicular to p(n): 
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Therefore, with Eq. (8) and Eq. (9), 
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Now, g(n+2) – g(n+1) is the change in the gradient as we move from w(n+1) to w(n+2). From Eq. 
(5), the gradient of E at w(n) can be found to be 
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Therefore, 
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or 
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When Eq. (13) holds for two vectors p(n) and p(n+1), these vectors are said to be conjugate. 
 
After a line minimization along p(n), a point w(n+1) is reached, the next minimization direction is 
constructed using 
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There are various rules to determine β(n) in order to ensure conjugacy of p(n) and p(n+1); two 
alternate rules are the following: 

 The Fletcher-Reeves formula [7]: 
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 The Polak-Ribiere formula [8]: 
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In order to find a particular value of η(n) in the update rule of Eq. (6) a line search is involved; that 
is to say, we have to find a value of η(n) for which is minimized, given fixed 
values of w(n) and p(n). This η(n) is defined by 
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The performance of the conjugate gradient method is greatly influenced by the accuracy of the line 
search. 
 
2.2 Powell-Beale Restart Procedure 
 
The conjugate gradient method can be improved by periodically resetting the search direction to the 
negative of the gradient, i.e. , 
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Since this procedure is ineffective, a restarting method that does not abandon the second derivative 
information is needed. One such reset method has been proposed by Powell [9]. For this technique, 
we will restart if there is very little orthogonality left between the current gradient and the previous 
gradient . This is tested with the following inequality 
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If this condition is satisfied, the search direction is reset to the negative of the gradient 
 
3 Simulations on Real-World Applications 
 
Neural Network Toolbox in Matlab R12 version 6 was used to stimulate the following data sets. 
 
3.1 Gender Classification of Crabs 
 
A 6-5-2 network was used where the six inputs correspond to species, frontal lip, rear width, length, 
width and depth and the two output nodes correspond to male and female. The training set consists 
of 120 vector pairs while the testing set consists of 80 vector pairs. The learning process was 
terminated when the mean squared error (MSE) reached 1*10-6 within 100 epochs. Table 1 shows 
the results of the simulations, which are the average of 10 trials. The learning curves in a typical run 
of both  the  Fletcher  Reeves  and  Polak  Ribiere,  together  with Powell restart are shown in 
Figure 1.  

Table1. The simulation results for the Gender Classification of Crabs using Conjugate Gradient Methods 

Algorithm Epoch Mean squared error Gradient 
Fletcher Reeves 0 0.64757 1.33668 
 25 0.322316 0.766277 
 50 0.311316 0.241607 
 75 0.297807 0.704012 
 100 0.159405 0.164871 
    
Polak Ribiere 0 1.27289 1.34359 
 25 0.345189 0.0459379 
 50 0.313014 0.0458141 
 75 0.242026 0.0391324 
 100 0.199122 0.0287724 
    
Powell-Beale 0 1.48478 0.269887 
 25 0.333582 0.0363292 
 50 0.320753 0.106848 
 75 0.306246 0.0294416 
 100 0.297566 0.10075 



 
 

 
Figure 1. The learning progressions of the Gender Classification of Crabs Problem 

 

Polak Ribiere is definitely better than the other algorithms escaping shallow local minima and 
providing fast training. It cab be observed that Polak Ribiere conjugate gradient starts to outperform 
the other methods right at the beginning of the learning and the MSE decreases sharply until it 
reaches 100 epochs. With the Fletcher Reeves and Powell restart, the decrease in MSE is rather 
gradual during the course of learning until it reaches 100 epochs. There were no cases of the 
solution getting stuck in a local minimum, indicating that the choice of initial weights is suitable. 
 
3.2 Classification of Iris Plant 
 
The data set consists of three different species, Setosa, Versicolor and Virginica. The network 
consists of 4 inputs-sepal length, sepal width and petal width. A 4-2-3 network was used where the 
output nodes correspond to the 3 classification classes.  The training set consists of 99 vector pairs 
while the testing set consists of 50 vector pairs. For all simulations, the training has been continued 
until the MSE reached 1*10-6 within 100 epochs. The MSE after 25, 50, 75 and 100 epochs 
respectively are summarized in Table 2.  
 

Table2. The simulation results for the Classification of Iris Plant using Conjugate Gradient Methods 

Algorithm Epoch Mean squared error Gradient 
Fletcher Reeves 0 0.975378 0.20021 
 25 0.347129 0.0467346 
 50 0.323631 0.0510218 
 75 0.30802 0.0762527 
 100 0.289361 0.0192811 
    
Polak Ribiere 0 1.4576 0.173127 
 25 0.133615 0.0521216 
 50 0.126588 0.0448276 
 75 0.119296 0.0369579 
 100 0.109502 0.00644071 
    
Powell-Beale 0 0.350441(after 6 epochs) 0.12742 
 25   
 50   
 75   
 100   



 
 

 
Figure 2. The learning progressions of the Classification of Iris Plant Problem 

 
As can be observed, the Polak Ribiere has a remarkable advantage in accelerated convergence 
providing a reduction in MSE of up to 96.27 % after 100 epochs have been reached. The Fletcher 
Reeves conjugate gradient exhibits gradual convergence after about 4 epochs. In contrast, Polak 
Ribiere conjugate gradient develops a sharp decrease in MSE immediately at the start of the training 
process until 100 epochs have been reached. Powell restart could not converge to the required 
solution indicating that it gets stuck in a local minimum. 

 
3.3 Human Face Recognition Problem 
 
A 460-12-5 network was used where the output nodes correspond to the 5 classification classes. The 
training and testing sets consist of 45 images each. A detailed description of the data set can be 
found in Evans et al [1]. Similar to the previous problems, the training has been continued until the 
MSE reached 1*10-6 within 100 epochs. Table 3 shows the results of the simulations which are the 
average of 10 trials. 
 

Table3. The simulation results for the Human Face Recognition Problem using Conjugate Gradient Methods 

Algorithm Epoch Mean squared error Gradient 
Fletcher Reeves 0 0.494581 2.56718 
 25 0.02415 0.135225 
 50 0.00613019 0.058746 
 75 0.001435 0.0329887 
 100 0.00061473 0.0245373 
    
Polak Ribiere 0 0.711677 2.00961 
 25 0.0291612 0.168869 
 50 0.06418198 0.0752522 
 75 0.00192943 0.0341702 
 100 0.000986186 0.0259714 
    
Powell-Beale 0 0.685621 1.35497 
 25 0.0306093 0.0871412 
 50 0.0171283 0.0508304 
 75 0.00985756 0.0293154 
 100 0.00218934 0.139763 

 
 



 
 

 
Figure 3. The learning progressions of the Human Face Recognition Problem 

 
As can be observed, Fletcher Reeves, Polak Ribiere and Powell restart had similar performance. 
After 100 epochs is reached a reduction in MSE of up to almost 100 % was obtained for all three 
methods. A typical run of all the methods is shown is Figure 3. It can be observed that all the three 
methods are able to provide accelerated convergence right at the beginning of the learning and the 
MSE decreases sharply until 100 epochs is reached. 
 
4. Conclusion 
 
The conjugate gradient methods, namely, Fletcher Reeves conjugate gradient, Polak Ribiere 
conjugate gradient and Powell-Beale restart have proven to be very effective and superior in terms 
of convergence when tested and mutually compared on three real world application problems: 
gender classification of crabs, classification of iris plant and human face recognition problem. 
Conjugate gradient algorithms, which can be seen as error back propagation with momentum, were 
shown to be a good choice for feed forward network training. In particular, Polak Ribiere conjugate 
gradient shows promising results for training feed forward networks. The conjugate gradient 
methods have advanced convergence rates since they use second order information to calculate the 
new direction. 
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