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Abstract 
 

This paper proposes a computationally efficient BDD−based method for Walsh spectrum 
calculation, adapted for particular application where the subset of spectral coefficients is needed. 
This method takes the advantage of the property that for most switching functions f the size of BDD 
is usually quite a bit smaller than the size of the Multi-Terminal Binary Decision Diagram 
(MTBDD) for the Walsh spectrum. The selected Walsh coefficients can be computed by processing 
different nodes in the BDD for f and the pair of calculated coefficients is stored in two fields 
assigned to the root node. Complexity of the algorithm to calculate a pair of Walsh coefficients is 
proportional to the size of the BDD for f. 
 
1. Introduction 

 
The orthogonal transforms such as Rademacher, Walsh, Radhemacher−Walsh, Walsh−Paley, 
Reed−Muller etc. are used in spectral techniques for different applications in digital circuits 
especially in digital signal processing, design, synthesis, testing etc [7, 8, 9, 10, 11, 12]. The main 
limiting factor for application of spectral techniques is their computational complexities, either in 
direct methods or fast methods like FFT algorithms, due to exponential increase of input variables 
2n [9, 11]. Storage and time requirements are also major disadvantages of spectral techniques. 
However the use of Binary Decision Diagram (BDD) in presentation and manipulation of Boolean 
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function has drawn considerable interest due to their computational simplicity, reduced storage 
requirement and ability to implement operations on function as graph algorithms [2, 3, 4, 5]. But the 
common disadvantage of the available techniques with BDD is that they always calculate the entire 
spectrum of switching function. This can be considered as important disadvantage, because in many 
logic design and fault detection using spectral methods only some selected coefficients are needed 
[1]. 
This paper describes a computationally efficient BDD−based method for Walsh spectrum 
calculation, adapted for particular application where the subset of spectral coefficients is needed. 
We calculate the pairs of Walsh coefficients using a 2 × 2n window by exploiting the periodicity of 
Walsh function. We split the window into a set of (2 × 2) window and distributed them over the 
MTBDT for the Walsh transform by simultaneously matching the recurrence in both Walsh 
matrices and in a decision tree. The both recursive structure originate in the decomposition of the 
domain group of order 2n into the direct product of cyclic subgroup of order 2. Due to the restriction 
to 2 × 2 sub-windows the related calculations match the basic Walsh transform matrix W(1) and we 
just have to take into account the periodic change of sign in the Kronecker product of W(1) by itself 
corresponding to −1 in W(1). It is also possible to calculate the set of Walsh coefficients by our 
method for any switching function. 
 
2. Background Concept 

 
The Walsh function of order n is defined as [9]: 
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In many application this Walsh function used in different ordering but they produce the same set of 
Walsh coefficients [8]. Since the natural ordering of the Walsh function is easy to represent in 
matrix form hence we are using it in this paper. Walsh function of natural order can be written in 
the matrix form as follow: 
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and by definition 10∆T . 
Let f(X) be a Boolean function of n variables, X = {x1, x2, ………., xn}, xi ∈ {0, 1} and i = 1, 2, 
………, n. Then all 2n Walsh coefficients of the function f can be obtained by using the following 
relation. 

Wn F = R     (3) 
Where R represents the complete set of Walsh spectrum. For computing Boolean domain by Walsh 
spectrum of the given Boolean function use reverse of the equation (1). 
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The order of the coefficients is determined by the number of xi variables in the corresponding XOR 
function. Since the order of the transformation matrix is 2n × 2n, hence all 2n spectral coefficients 
requires 2n × 2n multiplication and {2n × 2n −1}. 



Examaple 1 
For a three variable switching function f(x1, x2, x3) = [0, 0, 0, 1, 0, 1, 1, 1] the Walsh spectrum can 
be calculated using equation (2) and (3) 

R = {+4, −2, −2, 0, −2, 0, 0, +2} 
 
3. Decision Diagrams 

 
The matrices and vectors which are the integral part of spectral techniques are represented by the 
different type of decision diagrams which are used as the data structure to perform all the 
manipulations and calculations. The Walsh spectrum is an integer-valued function and can be 
represented by the Multi-terminal Binary Decision Diagram (MTBDD) [6]. The MTBDD is derived 
by the reduction of the corresponding Multi-terminal Binary Decision Tree (MTBDT). Since the 
switching functions are a subset of integer valued functions if logic values 0 and 1 are interpreted as 
integers 0 and 1. Applying this particular application Binary Decision Diagram (BDD) become 
MTBDD. Figures 1 and 2 MTBDT (f ) for example 1 and MTBDT (R). 
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Figure 1: MTBDT for truth vector (f) 
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Figure 2: MTBDT for Walsh Spectrum (R) 



Here the solid and lashed lines indicate the logic 1 and 0 respectively, which defines the path. In an 
MTBDT (f ), a level consists of nodes to which the same variable in f(x1, x2, ………….., xn) is 
assigned. We assume that levels in an MTBDT are denoted by indices of the variables assigned. 
Thus the levels are denoted by 1 to n, where n is the number of variables, with the root node at the 
level denoted by 1. The same convention can be applied by to MTBDDs. 
 
4. Walsh Coefficient Calculation 

 
First of all we assign to each node v two fields denoted by plus (v) and minus (v) in the MTBDT of 
given function (f ) [1]. After that we calculate the values of these fields as follows: 
Assume that we want to calculate a pair of Walsh coefficients W  and W , d∈ {0, 1, ………, 
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n−1}. We determine the binary equivalent d = (d1, …………., dn) through the relation 
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binary representation for d. Thus P = (d2, ……………, dn). The jth element of P determines the way 
of calculation of fields plus f(v) and minus f(v) assigned to the nodes at the level j in the MTBBD (f 
) given as following: 
(i) If v is a terminal node showing the constant c, then 

plus f(v) = minus f(v) = c   (5) 
(ii) If v is a non-terminal node with the successors v.low and v.high then 

plus f(v) = plus f(v.low) + plus f(v.high)  (6) 
minus f(v) = plus f(v.low) − plus f(v.high)  (7) 

for pj = 0, and 
plus f(v) = minus f(v.low) + minus f(v.high)  (8) 
minus f(v) = minus f(v.low) − minus f(v.high)  (9) 

for pj = 1 
Clearly, if j = n and the outgoing edge of a nodes v point to the constant nodes showing the values 
cq and cq+1, q∈ {0, 1, ………, 2n−1} then plus f(v)= cq + cq+1 and minus f(v)= cq − cq+1. In figure (3) 
and (4) we show the application of (5), (6), (7), (8) and (9). 
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 Figure 3: MTBDT (f ) for p = 0  
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 Figure 4: MTBDT (f ) for p = 1 
 
 
A procedure for the calculation of the pair of the Walsh coefficients Wd,  can be 
formulated as follows: 

)1(2 −+ ndW

(i) Express the decimal index d of the required Walsh coefficients Wd by a binary sequence d = 
(d1, d2, ……….., dn), where n is the number of variables. 

(ii) Generate a parameter vector P as: 
P = (d2, d3, ……….., dn) 

(iii) Traverse MTBDT (f ) level by level starting from level n. Calculate the values of fields plus 
f and minus f for all non-terminal nodes. 

(iv) The pair of Walsh coefficients (Wd, W ) in the natural ordering is defined as  )1(2 −+ nd
)(rootfplusWd =  

=−+ )1(2 ndW  minus f (root) 
Where root is the root node in the MTBDT (f ). 
 
Example 2 
The calculation of pair of Walsh coefficients W3 and W7 for any three variable function is shown in 
Fig. (5). 
Since the d = (0 1 1) for W3 and d = (1 1 1) for W7, for both coefficient P = (11), which shows that 
they can be calculated simultaneously. The values of fields plus f(v) and minus f(v) are shown on 



the left and the right side of the node. If the procedure explained in Fig. (5) is applied to example 1 
we get W3 = 0 and W7 = +2. 
 f 
 
 Minus field Plus field 

W7 = (f0 − f1− f2 + f3) − (f4 − f5 − f6 + f7) W3 = (f0 − f1− f2 + f3) + (f4 − f5 − f6 + f7) 

(f4 − f5) − (f6 − f7) (f4 − f5) + (f6 − f7) (f0 − f1) − (f2 − f3) (f0 − f1) + (f2 − f3) 

f6 − f7 f6 + f7 f2 − f3 f2 + f3 f4 − f5 f4 + f5 f0 − f1 f0 + f1 

f7 f6 f5 f4 f3 f2 f1 f0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5: Calculation of W3 and W7 
 
We can calculate the subset of Walsh spectrum with r coefficients by running this procedure a few 
times for different values of elements of the parameter vector P. The choice between the fields plus 
f or minus f of the successors which will be used in the calculation of a Walsh coefficients depends 
on the index of the spectral coefficients which is going to be calculated. 
 
5. Conclusion 

 
The proposed method is more suitable for the calculation of a subset of Walsh coefficients. Unlike 
the existing DD based (decision diagram) method the algorithm for implementation of the proposed 
method does not produce MTBDT for spectral coefficients. Instead we assign to each node in the 
MTBDT (f ) two fields denoted as plus and minus fields. These fields are used to store the results of 
intermediate calculation. In this way the algorithm efficiently exploits the property for a great 
majority of switching function. The software for this algorithm is developed in C. 
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