
An Implicit Enumeration Algorithm for Mixed-Integer-
Linear Programming

P.Radhakrishnan
Faculty of Information Science and Technology

Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
Email: radha.krishnan@mmu.edu.my

M.V.C.Rao
Faculty of Engineering and Technology

Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
Email: machavaram.venkata@mmu.edu.my

Abstract
An endeavour is made in this paper to present a novel implicit branch and bound method for mixed
integer linear programming problems. The integer variables are driven to their non-basic variables,
which can be fixed, at either lower or upper bound, remaining non-basic variables as such. The
concept of twin models is exploited to get more number of nodes to get the optimal solution. This
method eliminates non-optimal solutions and thus reduces the number of iterations. A different and
simple method of adding a new constraint is formulated. Many typical test problems are solved on
a micro computer to highlight the efficacy of this method. The accuracy obtained was good. The
fact that it required many branching to solve even a small model is a strong evidence of its
invulnerability to round off error. Its memory requirement is also modest. It is highly effective in
solving a very large class of integer programming models, mixed integer, pure integer and the
special class involving only binary variables. This does not add any new constraints to the original
constraint set, since it merely manipulates upper and lower bounds on the integer variables. Hence,
it can be said that it is immune to round-off errors. Experience indicates that the use of surrogate
constraint is effective in improving the computation time. The solution time varies almost
exponentially with the number of variables. So problems up to 100 variables can be solved in a
reasonable amount of computation time. The most important advantages are its immunity to round
off errors and its modest memory requirement in comparison with other methods like branch and
bound and cutting plane method.

Introduction
Branch and Bound approach is the most widely used one for solving all-integer and mixed-

integer-programming models, but it is well known that B&B suffers from round-off error, and in
many cases requires substantial computer storage resources. In implicit enumeration algorithm,
both the disadvantages are eliminated.

MILP is an important tool for modeling and analysis, but finding solutions to even modest-
sized MILP models without resorting to scarce and expensive ’Super-computing… is challenging
and problematic at best. Land and Dong developed an approach called branch-and-bound that
begins with the optimal solution of the LP relaxation, and generates explicit lower-and upper-
bound constraints on integer decision variables, whose relaxed solution values are fractional.
Iterations proceed in a tree like fashion, appending these ’cuts… until an integer solution is located.
Two serious difficulties with B&B are the effects of round-off error and the requirement in many
cases for massive amounts of computer storage. The former can result in (many cases) sub-optimal

solutions, with no clue to the analyst that this has happened. The latter may become exceedingly
expensive in terms of computer resources with no forewarning.

The implicit enumeration algorithm starts out with all variables set equal to 0 and then
systematically specifies certain variables to take on the value 1 until a feasible solution is obtained.
This first feasible solution is then considered to be the best feasible solution to date. Since the
variables are chosen heuristically, it is quite possible that the first feasible solution may not be
optimal. Consequently, the algorithm systematically looks at various combinations of the variables
set equal to 0 and 1 that can possibly improve on the best feasible solution, until an optimal
solution is obtained. Many combinations that cannot possibly lead to a better feasible solution are
not examined and are thus said to be implicitly enumerated. The details of how variables are
chosen to be 0 or 1 and how blocks of possible solutions can be eliminated without explicitly
enumerating them are quite lengthy, so first how the algorithm works is illustrated followed by the
complete description of the algorithm.

Problem formulation and Notation
Consider the mixed integer-programming problem with the usual notations

Maximize Z =CTX
Subject to A.X = b

 X≥0 and Xj integers for jε {I} � (1)

The constraints from (1) are B.XB +D.XD = b. If, B-1 is the inverse of the basis, then the solution to
the LP relaxation of (1) is XB = B-1.b, XD = 0 Which is a basic solution; and If, XB≥0, it is also a
feasible solution.
Suppose the optimal solution to (1) includes Xj=dj. j∈{I}, where dj is an integer. Let us introduce
an integer upper bound Uj=dj or lower bound Lj = dj and make the linear transformation. Xj… =Uj-
Xj If, dj is an upper bound Xj… =Xj-Lj If, dj is a lower bound. Thus we get an optimal solution in
which Xj… = 0.
Two linear programming models are said to be twin models if, they differ only in one or more
integer bounds. The following model is a twin model of (1)

Maximize Z =CTX , Subject to A.X = b
 Xj ≥0 for all j Uj≥Xj≥Lj j∈{I} � (2)
The Twin models (1) and (2) will prove useful in the exposition to follow. When we follow the
twin model we get more no. of nodes to get the optimal solution. This method uses more computer
storage than search methods do, but the best solution found is an optimal solution.

Suppose a network consists of N nodes 1,2,3,N and suppose we wish to find the shortest
route from node 1 to node N, by way of the linked nodes. Suppose the distance from node i to node
j is dij if, these two nodes are not linked then dij can be taken to be infinite. To find the shortest
route from 1 to N we proceed as follows. Let Xij=1 if, the branch from i to j is on the route;
Otherwise Xij=0.

Then for each I, on the route or not X ij
j

≤∑ 1 for i =1 and for each j, on the route or not

X ij
j

≤∑ 1 for j = N. If, we arrive at a point we must leave it, so for each j, except 1 and N.

X Xij jk
ki

= ∑∑

 2 8
 6

1 3 7

 4 5

D =
i

ij
j

ijX d∑ ∑ The values 0,1 for the Xij can be ensured by constraint.

The Implicit Enumeration Algorithm (IEA)
In this section we outline the IEA, suppressing the mathematical details for clarity of

exposition
V = A list variable bounds for twin models

Z* = Current best feasible solution to (1)

Z = Optimal solution to the LP relaxation of the current twin model.
Initially, V is empty. If, no explicit lower or upper bounds are available, set Lj=0 and Uj= +∞ for
j∈{I}; set Z* = -∞. Since the models are maximization ones, relax the integer restriction on Xj,
j∈{I} in (2).

Algorithm
Step 1: Solve the resulting Linear programming model using a Revised Simplex

 Method. At the kth iteration the solution is
 XB

(k) = B-1.b, XD
(k) = d(k)

 here d(k) is an integer vector of dj (Upper and Lower bounds). If, there is no
 feasible solution, or if, Z<Z* go to Step 3. Otherwise, go to Step 2.
Step 2: At least one Xj∈{I}, is non-integer. Select the first non-integer Xj, j∈{I}.
 Generate the twin models as follows. Record the lower bound Uj=[Xj] so that Xj

 is required to be an element of { Uj old upper bound for Xj} and push this
 model into the V list.
 Record the upper bound Lj =[Xj]+1 so that Xj is required to be an element of
 {old lower bound for Xj,Lj } and push this twin model onto the V list. The
 algorithm always begins with the previous optimal result. ([.] Denotes the
 greatest integer part). Go to Step 3.
Step 3: If, V is empty, go to Step 4. Otherwise, select the most recent bound in V and
 solve the resulting model (k+1) based on twin model (k) as follows:
 XB

(k+1) = XB
(k) - A(k). (L(k+1) -d(k))

 = B-1. {b - A(L(k+1) - d(k)) Where A(k) = B-1.A and XD
(k+1) = LD

(k+1)

 Set k = k+1 Go to Step 1.
Step 4: If, Z* = -∞, there is no feasible solution for (1). If, Z*>-∞ the feasible solution
 that yielded Z* is optimal.
It is an improvement over the conventional simplex method. Because it does no tableau pivoting or
basis-matrix inverse B-1 updating. The modified algorithm accommodates integer variables by use
of a bounded algorithm together with a Branch and Bound strategy in which each successive model
begins at a starting point that was the previous optimal solution. Through the use of upper-bounded
LP concepts, the solution of (2) proceeds rapidly when it starts from the known solution to the twin
model (1).

After using the recursion formula to obtain CT = CT
B B-1 choose at the jth iteration the

entering variable that satisfies (Cj - C
Taj) > 0 and Xj=Lj, (Cj - C

Taj) < 0 and Xj=Uj

here aj is the jth column of matrix A. Subsequently, we will denote the updated current value as a…j
= B-1aj, b… = B-1b etc.

The bounded technique used herein involves revision to the sub-algorithms for selection of
the existing variable and for performing updates (adding elementary vectors to the string, etc.).
This approach involves modification of the upper-bounded technique, since their will always is
both an upper bound and a non-zero lower bound resulting from the branching step. The Implicit
enumerated procedure eliminates non-optimal solutions and thus reduces the amount of calculation.

Procedure
• Find an initial feasible integer solution
• Branch: Select a variable and divide the possible solutions into two groups. Select one branch

for investigation.
• Find the upper bound or maximum value for the problem defined by the branch selected. This

bound can be found by considering the problem as a linear programming problem.
• Compare: Compare the bound obtained for the branch being considered with the best solution

so far for the branches examined. If, the bound is less, delete the whole new branch. If, the
bound is greater and an integer it becomes the new best solution so far. If, the bound is greater
but not an integer, continue in this same branch by branching further.

• Completion: When all branches have been examined, the best solution so far is the optimal
solution.

Geometrical Interpretation
Geometrical interpretation of implicit branch and bound method is the best explained

through an illustration. Using IA method to solve the following IPP.
Maximize Z = X1+X2 Subject to 3X1+2X2≤12, X2≤2, X1, X2≥0 and are integers.
The above problem can be rewrite as follows
Minimum Z = -X1-X2, Subject to 3X1+2X2+X3=12, X2 X4=2, X1, X2≥0
The Optimal Solution of the above linear programming problem is X1=8/3, and X2=2 with Min
Z=14/3. As this solution is not integer valued, the given linear programming problem is partitioned
into two sub-problems. Since X1=8/3 gives 2< 8/3 < 3, the sub problems are
Sub problem 1 Sub problem 2

Maximize Z = X1+X2 Maximize Z = X1+X2

Subject to 3X1+2X2≤12 Subject to 3X1+2X2≤12
 X2≤2, X1≤2 X2≤2 , X1≥3
 X1, X2≥0 and are integers. X1, X2≥0 and are integers.

The Optimal Solution of problem 2 is X1=2, X2=2 with max Z=4. Whereas the Optimal
Solution of problem 3 is X1=3 and X2 = 3/2 with max Z=9/2. In sub problem 1, Since all the
variables are integers there is no need to branch this problem further. But in sub problem 2 since X2

is still non-integer it needs further subdivision.

Now since X2=3/2 gives 1 < X2 < 2, we form two new sub problems by adding the
constraints one by one in problem 3. The two additional sub-problems are
Sub problem 3
MaximizeZ=X1+X2, Subject to 3X1+2X2≤12 ,X2≤2,X1≥3 ,X2≤1,X1, X2≥0 and are integers.

Sub problem 4
MaximizeZ=X1+X2, Subject to3X1+2X2≤12, X2≤2 , X1≥3 , X2≥2,X1,X2≥0and are integers.

In sub problem 3 the constraint X2≤2 is redundant. The Optimal Solution to this problem is
obtained as X1=10/3 and X2=1 with max Z=13/3 . It is also obvious that any further branching of
the problem will not improve the value of the objective function, as the next subdivision will
impose the restrictions X1≤3 and X1≥4 respectively. Then the Optimal Solutions are X1=3 and
X2=1and X1=4,X2=0 respectively. Both of these solutions give the max value of Z=4. It may be
noted that there does not exist any feasible solution to sub problem 5.

Hence, over all the maximum values of the objective function the maximum is Z=4 and the
integer valued solution is any of the three X1=2 and X2=2 or X1=3 and X2=1 or X1=4, X2=0.
Results of Computational Testing

Results from one of the test models-the so-called ’fixed changes… MILP model are
especially interesting. Consider the following IP model
Maximize Z = 7X1+9X2

Subject to -X1+3X2≤6, 7X1+X2≤35 , X1 ≥0, X2≤7 , X1, X2 are integers.
The above problem can be rewritten as follows
Minimum Z = -7X1-9X2

Subject to -X1+3X2+X3=6, 7X1+X2+X4 =35 , X1 ≥0, X2≤7 , X1, X2are integers.
At the starting iteration we can very well consider Z* =0 to be the lower bound for Z, since

all Xj=0 are feasible. The master list contains only the LPP. The given problem is designated as
problem 1. Initially, the V list is empty, Z*→∞
Step 1: Solve the underlying LP model using the Revised Simplex method, determine the
 Optimal Solution Z=63, X1=9/2, X2=7/2

XD
(1) = d(1) =

0

0

 Since the solution is not integer valued, select X1, then since [X1
*] = 9/2 = 4 place on the

master list the following two additional problems
 Sub model 2

Maximize Z = 7X1+9X2

Subject to -X1+3X2≤6, 7X1+X2≤35, 5≤X1≤7, 0≤X2≤7 X1, X2are integers.
Sub model 3
Maximize Z = 7X1+9X2

Subject to -X1+3X2≤6 ,7X1+X2≤35,0≤X1≤4, 0≤X2≤7 X1, X2are integers.
Step 2: Push the twin models, each with opposite integer bounds on to the V-list

 V = {5≤X1≤7, 0≤X1≤4}
Step 3: Select the first model in V. The model to be solved as

L U
X1

X2

X3

X4

5
0
0
0

7
∞
∞
∞

Sub model (2)

 And V = {5≤X1≤7} gives Z = 35, X1=5, X2=0 (Solution to sub model 2)
 And V = {0≤X1≤4}

L U
X1

X2

X3

X4

0
0
0
0

4
∞
∞
∞

Sub model (3)

Step 1: Start from the current solution to solve the twin model. We find submodel 3 is
 available and determines the following optimum feasible solution to it Z= 58,
 X1=4, X2=10/3 Since the solution is not integer valued, select X2. Then

 X2
*=[10/3] = 3, we additional problems on the master list are placed

Sub model 4
Maximize Z = 7X1+9X2

Subject to -X1+3X2≤6, 7X1+X2≤35, 0≤X1≤4, 4≤X2≤7 X1, X2are integers.
Sub model 5
Maximize Z = 7X1+9X2

Subject to -X1+3X2≤6, 7X1+X2≤35, 0≤X1≤4, 0≤X2≤3 X1, X2are integers.
Step 2: Push two twin models each with opposite integer bounds onto the V list

 V = {0≤X2≤3,4≤X2≤7}
Step 3: Select the first model in V. The model to be solved as:

L U
X1

X2

X3

X4

0
0
0
0

4
3
∞
∞

and V={4≤X2≤7}. Z* =-∞ At this step L=0=d so the current solution
 (not optimum) to this model.
Step 1: Start from the current solution to solve the twin model. We determine the
 following Optimal Solution to this problem Z = 55, X1=4, X2=3.

 At this point the process discovers that an integer solution is found, and proceeds
 go to step 3.
Step 3: Pop the next bound X1≤4 from the V list. This sub model has no feasible
 solution. Hence go to Step 4.
Step 4: The incumbent solution Z = 55 is optimal for the IP model
 The above integer solution obtained is the optimum solution of the given problem. It
reduces the round off error. Results of the problem give the integer solution.

The theoretically best decisive rule for making any such selection should embody the
following characteristics
• It should be computationally simple
• It should tend to minimize the number of iterations required to obtain an optimal solution
• It should be computationally efficient on the basis of time

The above proposed IEA possess the above characteristics

Criteria for Adding New Constraint
In IEA method, adding new constraint is a different one from the other integer

programming methods. Initially solve the given Integer problem by linear programming method
i.e. Revised simplex method. We get the solution for variables like Xj : j∈I. some of the variables
may have fractional or non-integer solution. Choose, from among those variables Xj : j∈I. that does

not have integral values at the node, one variable to be used to form the branching constraints. An
easily implemented rule for this choice is to use the variable whose value has the largest fractional
part. We can write

XBi = [Xbi] + fi .
Where fi lies between 0 and 1 (ie) 0<fi<1. Since Xj must have an integral value, it must satisfy
either Xj≤[XBi] or Xj≥[XBi] +1

We create two new mixed integer (formation of new nodes) problems represented by the
node under consideration in the provisional steps. One problem is formed by ADDING
CONSTRAINT Xj≤[XBi] and the other problem is formed by ADDING CONSTRAINT Xj≥[XBi]
+1. Solve each of these problems as a linear programming problem using the dual simplex or
Revised simplex method.
Example
Maximize Z=7X1+3X2

Subject to 2X1+5X2≤30, 8X1+3X2≤48, X1,X2 ≥ 0
We solve the related linear programming problem and obtain the final tableau. From this

we see that an optimal solution is X1=4
7

17
, X2 = 4

4

17
 Z = 43

10

17
We choose X1 as the branching variable, since it has the largest fractional part. The

constraints to be added are X1≤4, X2≥5.
X1 X2 X3 X4

X2

X1

0

1

1

0

4/17

-3/34

-1/17

5/34

72/17

75/17

Z 0 0 3/34 29/34 741/17

We add these constraints in turn to the final tableau

X X X1 3 4

75

17

3

34

5

34
= + −

⇒ X1 + U1 = 4
3

34

5

34
4

75

17

7

173 4 1X X U− + = − =
−

3

34

5

34

7

173 4 1X X U− + =
−

→A

and for X1≥5

3

34

5

34
5

75

17

10

173 4 1X X U− + = + =
−

3

34

5

34

10

173 4 1X X U− + =
−

→B

Where A and B are two new constraints added to the original problem.

Basis for Comparison

Comparisons based on number of iterations and time for a few typical problems. It may be
observed that the computational savings obtained on the basis of the number of iterations is
invariably greater than that obtained based on time. And the main aspect of comparison is optimal
solution, which is compared with other two algorithms or programs. For any given problem the
implicit branch and bound has always been superior to the other integer programming methods on
the basis of the number of multiply/divide operations and processing time.

Table 1.Time Comparison

Problem Branch and Bound Gomery�s method Implicit method
Problem 1 1.53 1.53 1.43
Problem 2 1.54 4.45 1.34
Problem 3 1.65 3.35 1.56
Problem 4 3.29 3.3 2.34
Problem 5 1.92 1.100 1.8
Problem 6 2.37 2.36 2.1

Table 2. Iteration Comparison

Problem Branch and Bound Gomery�s method Implicit method
Problem 1 7 8 5
Problem 2 7 19 4
Problem 3 8 18 7
Problem 4 18 19 12
Problem 5 10 11 8
Problem 6 13 13 11

Conclusions
This paper deals with the round-off error and computer memory requirements of Branch

and bound algorithms. IEA increases the efficiency (Speed) of the branch and bound algorithm and
avoids the round off errors. The accuracy of the IA on small test models especially designed to be
difficult to solve, and whose optimal solutions are known is good. Running on an 80286 based
microcomputer. The algorithm found the correct solution in all cases. The fact that it required many
branching to solve this small model is strong evidence of its invulnerability to round-off error. And
the fact that it produced an optimal solution within the 640 KB of memory of the microcomputer
(actually, it only required 100 KB) demonstrates its very modest computer memory requirements.

Reported computational experiences indicate that the use of the surrogate constraint is
effective in improving the computation time. However because implicit enumeration investigates
all 2n binary points, the solution time varies almost exponentially with the number of variables n.

Time comparasion

0
2
4
6

1 2 3 4 5 6

Problems

T
im

e(
10

0
S

ec
o

n
d

s)

Implicit Branch and Bound Gomery's

I te ra t io n c o m p a rs io n

0

1 0

2 0

1 2 3 4 5 6

P ro b le m s

It
e

ra
ti

o
n

Im p lic it B ra n c h a n d B o u n d G o m e ry 's

References
1. A.Land and A.Doig, An automatic method for solving discrete programming problems,

Econometrica 28, 497-520
2. R.Dakin, A tree-search algorithm for mixed integer-programming problems, comput. J.*, 250-

255
3. YOULING LIN, LARY M AUSTIN AND JAMES R BURNS, AnImplicit Branch and Bound

Algorithm for Mixed Integer Linear Programming, Computers Opns Res Vol 17 No 5, Page
457-464, 1990.

4. L.M.Austin and B.Ruparel, The mixed cutting plane algorithm for all-integer programming.
Computers opns Res 13,395-401 (1986)

5. Dr. B.S. GOEL and Dr. S.K. MITTAL , OR, Pragati Prakashan ,Meerut, 1995.
6. P.K.GUPTA and D.S.HIRA Operation Research, S.Chand & Co Ltd., NewDelhi. 1994.
7. H.A Taha, Operations Research, An Introdution 3rd edn, pp 250-255. Macmillan, New

york(1982)
8. F.S. Hillier and G.J>Lieberman, Introduction to Operations Research, 4th Edn, pp274-276,

Holden-Day, Oakland,CA(1986)
9. P.Ghandforoush, A constructive primal-dual cutting plane algorithm for integer programming.

Unpublished P.hd disertation, College of Administration, Texas Tech University
10. C.A Trauth and R.E.D. Woolsey, Integer linear programming: a study in computational

efficiency, Mgmt Sci 15, 481-493.

Appendix

Numerical Examples

1.Maximize Z = 3X1 +2X2+5X3 4. Maximize Z = X1 +4X2

 Subject to X1+2X2+X3≥ 430 Subject to 2X1+4X2≤ 7
 3X1+2X3≤ 460, X1+4X2≤ 420, X1,X2,X3 ≥ 0 5X1+3X2≥ 15, X1,X2 ≥ 0
 Solution: Z=1350,X1 =0,X2=100,X3=230 Solution: Z=5, X1=1,X2=1

2.Maximize Z=7X1+3X2 5.Maximize Z = 6X1 +X2

 Subject to 2X1+5X2≤30, Subject to 13X1+2X2≤ 25
 8X1+3X2≤48, X1,X2 ≥ 0 8X1+3X2≤ 34, X1+4X2≤ 22,X1,X2≥ 0
 Solution : Z=42, X1=6, X2=0 Solution: Z=17,X1=2,X2=5,X3=9

3.Maximize Z = 7X1 +9X2 6.Maximize Z = 3X1 +2X2

 Subject to -X1+3X2≤ 6 Subject to X1+X2-X3≤1, X1+2X2≤10,
 7X1+X2≤ 35, X1,X2 ≥ 0 X1+X2≤ 7, X1,X2,X3 ≥ 0
 Solution: Z=55, X1=4,X2=3 Solution:Z=18,X1=4,X2= 3,X3=6

The tree for problems constructed by the branch and bound algorithm i.e IEA for the example.

 Max Z=7X1+3X2

Subject to 2X1+5X2≤30
 8X1+3X2≤48
 X1,X2 ≥ 0

 X1 =75/17, X2 = 72/17 , Z= 741/17 LP0

 X1 ≥ 5 X2 ≤ 4

 X1=5, X2=8/3, Z=43 LP2 LP1 X1=4, X2=22/5, Z= 206/5

 X2≥3 X2≤ 2

 No Solution LP4 LP3 X1=21/4, X2=2, Z=171/4

 X1≥6 X1≤5

 X1=5, X2=2, Z=41 LP6 LP5 X1=6, X2=0, Z=42

