

Optimized Butterfly-Kautz Rearrangeable Nonblocking
Networks*

Ibrahim A. Malik, Azman Samsudin, and Rahmat Budiarto
School of Computer Science, University Science Malaysia

11800 Penang, Malaysia
{ibraheem,azman,rahmat}@cs.usm.my

* The authors acknowledge the research grant provided by University Sains Malaysia, Penang that has resulted in this
article

ABSTRACT

A parallel computer is a collection of interconnected nodes (CPUs or memories) and the media
used to connect them. High-performance switching networks can provide the right balance between
the data producing node and the communication bandwidth that connect them. Rearrangeable
nonblocking network is one of the techniques used in switching networks. In this paper, we
proposed Optimized Butterfly-Kautz Rearrangeable Networks (OBKN), a nonblocking network with
reduction in the number of switching elements (SEs). The new reduced networks keeps all the
features and properties of the original Butterfly-Kautz Networks (BKN) such as O(N log2 N)
routing time, rearrangeable, and nonblocking. The only difference is that, the new Optimizes
Butterfly-Kautz Networks utilizes less cross-points than the original Butterfly-Kautz Network,
which will help reduce the cost of the switching network and increase network performance.

Keyword: Parallel computing, High speed and broadband networking, Rearrangeable
nonblocking networks, Kautz digraph, and looping algorithm.

1. INTRODUCTION

Large-scale parallel processing system that incorporate 26 to 216 processors working together to
solve a problem represent one important approach to the design of supercomputer. These systems
can provide the computational performance for tasks that require real-time response, that involve
extremely complex calculations, such as weather forecasting, biomedical signal processing, speech
understanding, satellite-collected image analysis, etc. A parallel computer is a collection of
interconnected processors (CPUs or memories) and the media used to connect them. We often say,
tightly coupled for the processors that are closed physical proximity and can communicate quickly
and we call the machine parallel computer rather than a computer network.

High-performance switching networks play a main role in parallel computers by providing the
right balance between the processing power of the processing units and the communication
bandwidth that connect them [1,2].

 The switching networks can be divided into two groups: fully connected nonblocking networks
and fully connected but blocking networks. Furthermore, nonblocking networks can be classified

into three categories: rearrangeable nonblocking networks, wide-sense nonblocking networks, and
strictly nonblocking networks [3,4]. A network is classified as rearrangeable if any idle input may
be connected to any idle output providing that existing connection are allowed to be rearranged.
Rearrangeable nonblocking networks are attractive in terms of its features and advantages. There are
many researches that have been conducted based on rearrangeable nonblocking networks to achieve
high connectivity and high performance in parallel computers with minimal hardware requirements.

This paper is based on rearrangeable nonblocking networks such as the well known Benes
networks [4]. Most of the network switches were constructed by using 2 x 2 switching elements
(SEs). In N x N Benes network there are 2n - 1 stages of 2 x 2 switching elements realizing all
possible permutation, N!, where n = log2 N. The features and advantages of rearrangeable
nonblocking networks have attracted many researchers attention. The main goal of most researchers
is to reduce the hardware complexity, hardware cost and to achieve optimal control algorithms. In
this paper we proposed a rearrangeable nonblocking network with reduced switching elements. The
reduction of the SEs is achieved by eliminating SEs which are not going to be used by the routing
algorithm (looping algorithm).

The reminder of this paper describes Optimized Butterfly-Kautz Networks (OBKN). Section 2
presents Butterfly-Kautz Networks with introduction to Kautz digraph. Section 3 introduces
Optimized Butterfly-Kautz Networks. Section 4 calculates hardware requirement for OBKN. In
Section 5 result achieved by OBKN is given. In Section 6 OBKN utilizing only 2 x 2 SEs is
discussed. The paper concludes with Section 7.

2. BUTTERFLY KAUTZ NETWORKS

2.1 Kautz MINs
Kautz digraphs[5,6], K(d,n) is a regular digraph with given degree d and diameter n, K(d,n) has

(d n + d n-1) nodes and (d n+1 + d n) edges. Figure 2.1 illustrates K(2,2),and K(2,3).
The nodes address is represented by a string of n (d+1)-ary digits with the condition that every

two consecutive digits of the string are always different. There are two routing algorithms for Kautz
digraphs, the shortest path algorithm and the long path algorithm. Let X={ x1 x2 x3… xn-1 xn } be the
source node and Y={ y1 y2 y3… yn-1 yn } be the destination node in K(d,n). The long path routing
from the source node to the destination node is via path:

x1 x2 x3… xn-1 xn → x2 x3… xn-1 xn y1
 → x3… xn-1 xn y1y2
 …
 → y1 y2… yn. if xn≠ y1 , and

x1 x2 x3… xn-1 xn → x2 x3… xn-1 xn y2
 → x3… xn-1 xn y2y3
 …
 → y2 y3… yn. if xn= y1.

The nodes address is represented by a string of n (d+1)-ary digits with the condition that every
two consecutive digits of the string are always different. There are two routing algorithms for Kautz

 Kautz MINs are formulated from Kautz digraphs [7,8], by redrawn with nodes in a column as
shown in Figure 2(a). In Figure 2(b) a few columns of K(2,2) are drawn together. In this diagram,
Kautz nodes are represented by 2 x 2 switching elements (SEs), and Kautz edges are now connect
nodes from column i to nodes in column i+1. These connections represent the connection of Kautz
MINs.

2.2 Butterfly Kautz Networks (BKN(n))

 Butterfly Kautz Networks, BKN(n), is a rearrangeable nonblocking networks based on Kautz
digraphs of degree two, with size N x N where N=2n + 2n-1 [8]. BKN(n) has 2n-1 stages. All stages
consist of 2 x 2 SEs except the middle stage which consists of 3 x 3 SEs. Figure 3(a) illustrates
BKN(2), and its connection. The first and third stages consist of 2 x 2 SEs, the middle (2nd) stage

Figure 1: Kautz digraph (a) K(2,2), (b) K(2,3).

(b) (a)

Figure 2: (a) K(2,2), (b) K(2,3) MINs.

(b)(a)

consists of 3 x 3 SEs. BKN(3) has five stages and it was constructed by stacking two BKN(2)’s as
illustrated in Figure 3(b). Similarly, two BKN(n-1)’s stacked together will constitute the 2n-3
middle stage for BKN(n). The connection from stage 1 to stage 2 and from stage 2n - 2 to stage 2n -
1 will follow the Kautz digraph connection as mentioned in section 2.1.
 Hardware requirement of BKN(n) are calculated by calculating the cross-points. This can be
achieved by counting the cross-points used by each switching elements. Switching elements are
considered as a cross-bar switches, therefore 2 x 2 SEs has four cross-points while 3 x 3 SEs has

nine cross-points. The cross-points count for N x N BKN networks is 2N(2 Log2
3

N2
 - 2) +3N.

The cross-points of Benes networks is 2N(2 log2 N-1). Routing algorithm for BKN(n) rearrange the
SEs in BKN(n) similar to the looping algorithm used in Benes networks. However, a different
procedure is needed to rearrange the middle stage which consists of 3 x 3 SEs. The state for the 3 x
3 SEs are determined while we are setting the state for the 2 x 2 SEs of BKN(n). If the input port of
BKN(2) is x and the destination output port is y, then the corresponding 3 x 3 SE input port






2
x will connect to output port 





2
y of the 3 x 3 SEs.

 Figure 3(b) illustrates an example of the looping algorithm on the following mapping.

Let,

p =



















341110219875126

121110987654321

(a) (b)

Figure 3: Butterfly-Kautz networks (a) BKN(2), (b) BKN(3).

First, the routing algorithm start with input 1 to be routed to output 6 through the upper BKN(2).
This mean the path from input 3 to output 5 has to use the lower BKN(2) (since output 5 and 6
should chose a different BKN(2)). Consequently input 4 is routed to output 7 through upper
BKN(2) (since input 3 and 4 should choose a different BKN(2)). Continuing with the process,
input 5 is routed to output 8 through the lower BKN(2), input 6 is routed to output 9 through the
upper BKN(2), input 9 is routed to output 10 through the upper BKN(2), and input 10 is routed to
output 10 through the upper BKN(2) which close the first loop. To start the second loop we may
decide to route input 7 to output 1 through the upper BKN(2), and consequently route input 8 to
output 2 through the lower BKN(2), which close the second loop. The third loop may route input 11
to output 4 through upper BKN(2). The third loop finished by routing the input 12 to 3 through
lower BKN(2).

2.3 Other Applications of BKN Networks

Besides the usage of BKN networks in parallel computing and telecommunications, it can also
be used in other applications such as Mix-net [10, 11] in cryptography; which has been used in
electronic voting and card gaming [12].

3. OPTIMIZED BUTTERFLY-KAUTZ NETWORKS (OBKN(n))

Based on the looping algorithm discussed in the previous section, it is found that the left-most
switch of BKN(n) can be set to either cross-state or straight-state without affecting the working of
the looping algorithm. Therefore in OBKN(n) this switch is eliminated. Since OBKN(n) was
constructed base on stacking two OBKN(n-1), the elimination of the left-most switch on both
OBKN(n-1) can also be made. The process of elimination of the switches can continue recursively
until OBKN(2).

 Figure 4: OBKN(3)

 Here, the concern is to take the advantages on the first decision of the looping algorithm, and that
by choosing the straight state of the SEs rather than the cross state. This method does not affect the
networks performance, Since OBKN(n) is made of a stacked of two subnetworks of size
OBKN(n-1) and the looping algorithm works independently for each one the subnetwork, therefore,
both leftmost switch of each subnetwork can be eliminated and set to straight connection. This
advantage can be exploited by eliminate the leftmost switch of any subnetworks recursively until
we reach OBKN(2). Based on the mapping that mentioned in the previous section, Figures 4 shows
the OBKN(3) routing similar to Figure 3, except the leftmost switch of OBKN(3) and OBKN(2)
that depicted by circles are eliminated.

 Figure 5 shows the OBKN(5) after switches elimination, the circles depicted in the Figure 5
indicates the location of the switches that have been eliminated. The number of switches being
eliminated in OBKN(5) are 15 switches.

The recursive function given below can calculate the number of 2 x 2 switches that can be

eliminated from OBKN(n). The function can then be summarized to a summation (1).

Function Eliminated (n)

Begin
 If (n = 2) then ;because the smallest
 OBKN(n) is OBKN(2)
 reduce = 1

 Else
 reduce = 2 n + Eliminated (n-1)

 return(reduce)
End

Figure 5: OBKN(5)

4. OBKN(n): HARDWARE COMPLEXITY

4.1 OBKN(n) Cross-Points

 The number of 2 x 2 switches, S, which can be eliminated in OBKN(n) are:

 S = ∑
−

=

2

0

n

i

2i (1)

Since we assume each 2 x 2 SE consists of 4 cross-points, the number of cross-points, C, eliminated
in OBKN(n) are:

C = S * 4 (2)
In general, the number of cross-points used in OBKN(n) are:

 (2N(2 Log2
3

N2
 - 2) +3N) - 4∑

−

=

2

0

n

i

2i, where n=Log2
3

N2
 (3)

4.2 Switch Rearrangement Delay

 Each switch has delay time while setting up the switch either straight or cross states. This delay
time is very small, but the delay increases in rearrangeable network. According to the algorithm, the
network needs to rearrange all switches before transmission. The following equations help to
calculate the total delay for switches configuration.
Let,λ be single switch delay for setting up.

Total number of SEs in BKN(n) =
3
N2

3
N22

2
N

2 +





 −log .

The total delay of all switches in BKN(n) =
3
N2

3
N2

22
2
N

+





 −log xλ .

Whereas in OBKN (n) = (
3
N2

3
N2

22
2
N

+





 −log - ∑

−

=

2n

0i

i2) xλ .

5. RESULTS

 Table 1 shows the number of input/output ports for Benes, BKN(n), and OBKN(n) and their
respective usage of cross-points. Figure 6 illustrates the number of cross-points used in Benes,
BKN, and OBKN against the number of input/output ports. Figure 7 shows the time needed for
switch rearrangement (switch setup either straight state or cross state).

I/O port Benes BKN OBKN
8 80 69 65
32 576 533 505
60 1298 1217 1157
128 3328 3156 3032
400 13030 12494 11806
1200 46698 45091 43047
1800 74259 71847 69803
2400 102997 99781 95689
3000 132609 128589 124497
3600 162918 158095 154003
4200 193808 188180 184088
4800 225193 218762 210574
5400 257013 249778 241590
6000 289218 281179 272991
6600 321770 312927 304739
7800 387793 377342 369154
8400 421215 409961 401773
9000 454886 442827 426447

Hardware Requirment

0

5000

10000

15000

20000

25000

8 32 60 128 200 300 400 500 600

Input/Output Port

N
o.

 o
f C

ro
ss

-P
oi

nt
s

Benes
BKN
RBKN

Delay of Switches rearrangement

0

50000

100000

150000

200000

250000

100 30 0 50 0 70 0 90 0
11 00

13 00
15 00

Input/Output Port

Sw
itc

h
re

ar
ra

ng
em

en
tT

im
e

Benes
KBN
OBKN

Table 1: Approximate number of cross-points for Benes, Butterfly Kautz Networks
(BKN), and Optimized BKN.

Figure 6: Cross-points usage on the three
networks against input / output ports.

Figure 7: Total time of switch rearrangement
for the three networks against the input/output
ports.

OBKN

6. OBKN(n): UTILIZING ONLY 2 x 2 SEs

As mentioned previously, there are some applications use rearrangeable networks such as
electronic voting and card gaming. These applications utilize network constructed from 2 x 2 SEs.
However, the middle stage of OBKN utilizes 3 x 3 SEs. We need to modify OBKN to be applicable
for those applications. Therefore, each 3 x 3 SE will be replaced by three 2 x 2 switches. Figure 8(a)
shows the structure of 3 x 3 SE, whereas, Figure 8(b) illustrates the connection and the structure of
three 2 x 2 switches (the replacement of 3 x 3 SE).

Figure 8: Switching elements (a) 3 x 3 SE, (b) the replacement of 3 x 3 SE (three switches utilizing
2 x 2 SE).

Figure 9 shows the connection of BKN(3), that is constructed from a single type of modular
switching elements. Each element is a 2 x 2 SE, which can be set by the control bit into straight
state or cross state. The rectangular in Figure 9 depicts the replaced 3 x 3 SE. Figure 10 illustrates
the connection and the structure of OBKN(3), which is similar to BKN(3) as illustrated in Figure 9,
but with the exceptional that, the leftmost switches of the network and its subnetworks are being
eliminated. The algorithm used in OBKN(n) is the same as the looping algorithm used in BKN(n).

 Figure 9: BKN(3) using 2 x 2 SEs Figure 10: OBKN(3) using 2 x 2 SEs

(b) (a)

The following equations calculate the total numbers of switches and cross-points used in OBKN
network:

Total number of SE in OBKN(n)= N2
3
N22

2
N

2 +





 −log - ∑

−

=

2n

0i

i2 (4)

Total number of cross-points in OBKN(n)= (2N(2 Log2
3

N2
 - 2) +4N) - 4∑

−

=

2

0

n

i

2i (5)

6.1 OBKN Introduce New Sizes for Switching Network

There are two ways of evaluating and comparing between Benes and OBKN networks. From
the equations above, OBKN(n) is better than Benes in term of hardware requirements. Secondly, is
by the size offered by each network. The size (input/output ports) of Benes network has to be a
power of 2, N=2n, which n is the diameter of the network. The size (input/output ports) of OBKN
network is N=2n+2n-1. In Benes, if the size of the needed network is not a power of 2, a larger than
needed network has to be used, and many resources in the used network will remain idle. For
example, assume n=10,

• N= 1024 input/output ports (Benes network).
• N= 1536 input/output ports (OBKN network).
• Total number of 2 x 2 switches =9728 SEs (Benes network).
• Total number of cross-points=38912 cross-points (Benes network).
• Total number of 2 x 2 switches =14849 SEs (OBKN network).
• Total number of cross-points=59396 cross-points (OBKN network).

If there is an application requires 1400 input/output ports, then the only number of input/output
ports that can realize this requirement is 2048 I/O ports (using Benes network) which is 211, n=11,
The number of resources that remain idle (in term of input/output ports) is 648 I/O ports, and in
term of SEs is 7572 SEs. however the same requirement can be realized using OBKN networks
without that much of hardware requirements; 1536 I/O ports, n=10. With this implementation the
number of resources that remain idle (in term of input/output ports) is 136 I/O ports, and in term of
SEs is 1547 SEs.

7. CONCLUSIONS

In this paper, we reduced the number of switches used in BKN(n) by removing switches which
are not being used in the routing algorithm. The new network, OBKN(n), uses the same routing
algorithm and has the same features as BKN(n) except less cross-points are used. Reducing the
hardware in term of number of cross-points will reduce the cost of the switching network and
increase switching network performance since less switches need to be configured during routing.
OBKN utilizes 2 x 2 SEs can be applicable for Mix-net in cryptography. In these kinds of
applications the reduction of SEs in OBKN is very useful in reducing heavy calculation associated
with mixing nature of the cryptography applications.

8. REFERENCES

[1] F. Tse-Yun, "A Survey of Interconne-ction Networks," Computer, vol. 14, no.12. pp. 12-27,
December 1981.

[2] Y. Raed, Y. Awdeh, and H.T. Muftah, “Survey of ATM Switch Architecture,” Computer and
ISDN systems, vol. 27. pp. 1567-1613.1995.

[3] V.E. Benes, "Optimal Rearrangeable Multistage connecting Networks," Bell Syst. Tech. J, vol.
43, pp 1641-1656, July 1994.

[4] V.E. Benes, "Mathematical Theory of Connecting Networks and Telephone Traffic," Academic
Press, (1965).

[5] W. H. Kautz, "Design of Optimal Interconnection Networks for Multiprocessors," Architecture
and Design of Digital Computers, NATO Advanced Summer Institute, pp. 249-272, 1969.

[6] P. Tvrdik, "Factoring and Scaling Kautz Digraphs," Research report 1398, LIP ENSL, 96364,
LYON, France, May 1994.

[7] I. A. Malik and A. Samsudin, "Butterfly-Kautz Networks: New Rearrangeable Nonblocking
Multistage Interconnection Networks," 5th World Multiconference On Systemics,
Cybernetics, and Informatics – SCI 2001, vol. V, pp. 251-255, July 2001.

 [8] I. A. Malik, A. Shakir, and A. Samsudin, "Multiple Kautz Interconnection networks with
Parallel Loading,"4th World Multiconference On Systemics, Cybernetics, and Informatics –
SCI 2000, vol. IV, pp. 267-271, July 2000.

[9] A. Shakir and A. Samsudin, "Switching Networks with Deflection Routing Based on Kautz
Digraph, " International Conference on Communication in Computing 2000 – CIC 2000, pp.
259-263, Jun. 2000.

[10] M. Abe, “Mix-Networks on Permutation Networks”, Asiacrypt 99, pp. 258-273, 1999, LNCS
1716.

[11] M. Abe and F. Hoshino. Remarks on Mix-Network Based on Permutation Networks.
Proceedings 4th International Workshop on Practice and Theory in Public Key Cryptography
PKC 2001, Lecture Notes in Computer Science, pages 317-324, Springer-Verlag, 2001.

 [12] Koutarou Suzuki , " Permutation Networks With Arbitrary Number of Input and its
Appilcation to Mix-net", IEICE Trans. A, Vol. E00-A, No. 1 January 2002.

