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Abstract. In Abdullah (1991), the use of finite difference discretization derived from the rotated (cross) 
five-point formula [4] in approximating  the elliptic equation resulted in a new improved group explicit 
algorithm, the Explicit Decoupled Group (EDG) method, where the new algorithm was found to be more 
superior than the explicit methods due to Yousif and Evans (1986). This new iterative algorithm has been 
developed to be run on the Sequent Balance, a shared memory parallel computer ([2], [3], [11]) where it was 
shown to be viable to be implemented on this type of platform. In this paper, we describe our effort in 
parallelising this method in solving the two dimensional Poisson equation on a newer parallel paradigm; the 
distributed parallel system.  Communication issues between processors have to be taken into account since 
data or information are transferred between processors via message passing. Several  strategies are proposed 
on parallelising this method on a cluster of Sun workstations; the results of some computational experiments 
will be reported. 
 
Keywords: Parallel computing; Poisson equation; rotated finite difference; Explicit Decoupled Group (EDG) 
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1. INTRODUCTION 
 
A new concept of  explicit methods, pointwise or groupwise, was extensively researched during the 
mid 1980’s as they possess qualities which makes them amenable for use on parallel computers.  
Such attempts include Evans and Abdullah(1983), and Yousif and Evans(1986), who developed the 
group explicit methods for the solution of parabolic and elliptic p.d.e.’s respectively.  The method 
was further developed as the Alternating Group Explicit (AGE) method (Evans & Sahimi, 1988), 
which is an analogue to the famous Alternating Direction Implicit(ADI) method but has the 
advantage of being explicit and thus very easy to parallelise.  Since then, the emergence of newer 
explicit methods with promising and improved results was greatly observed.  Among them are the 
works of Abdullah (1991) and Yousif & Evans (1995) who developed the four-point Explicit 
Decoupled Group (EDG) and six to nine-point EDG method respectively in solving the elliptic 
equation by discretising the p.d.e.’s on rotated grids.  In this paper, we study the parallel 
implementation of the four-point EDG method in solving the two dimensional steady-state elliptic 
equation on a message passing architecture as a way to further improve the performance of the 
method.  A brief description of the iterative method studied is presented in Section 2.  In Sections 3 
and 4, we discuss the strategies used for parallelising the method and Section 5 presents the results 
of experiments performed.   
 
2. THE EXPLICIT DECOUPLED GROUP (EDG) ITERATIVE METHOD 
 
Consider the finite difference discretization schemes for solving the Poisson equation  
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with Dirichlet boundary conditions   .   Here  is a continuous unit 
square solution domain.  This problem typically arises in the electrostatic, heat conduction, and 
fluid mechanics areas, among others.  Let Ω  be discretized uniformly in both x and y directions 
with a mesh size h = 1/n, where n is an integer. In solving this problem using the finite difference 
method,  Equation (2.1) may be approximated at the point (   in many ways.  The simplest 
approximation will result in the following: 
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Here, u u .  This formula is so commonly used that it is known as the five-point difference 
appproximation.  Another difference approximation is  (Dahlquist & Bjorck, 1974) 
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This approximation is used in the derivation of the four-point EDG iterative method (Abdullah 
1991; Yousif & Evans 1995).  Let us now assume that the solution at any four points of the solution 
domain can be solved using the rotated five-point finite difference approximation (2.3).  This will 
result in a (4x4) system of equations 
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which can be written in a decoupled system of (2x2) equations whose explicit forms are given by 
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It may be observed that the above two equations and their corresponding computational molecule 
(Figure 1) that the evaluation of (2.5) involves points of type  only, while (2.6) can be evaluated 
involving points of type  only.  Thus, the calculations of (2.5) and (2.6) can be carried out 
independently which may save the execution time by nearly half if the iteration is carried out on 

Figure 1.  Groups of four points for EDG 



only one type of points; either the type  or .  After convergence is achieved, the solution at the 
other remaining half of the points will be evaluated directly once using the standard five-point 
formula (2.2).  
   
3. PARALLELISING STRATEGIES 
 
Strategy 1 
In this strategy, the rectangular domain is decomposed into a number of horizontal strips consisting 
of  two rows arranged in the order shown in Figure 2 for the case n = 9.  Assuming the iteration 
involves points of type  only, the system of equations that represents the evaluation of solutions at 
these points using formulae (2.5) on these ordered horizontal strips, is as shown in (3.1)-(3.2):  
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where 
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The system (3.1) can be rewritten as 
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Applying the Gauss-Seidel iteration to (3.3), we have 
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so that 
    [B CuFirst

(k+1)
First Second

(k)= −−1 ]u D  ,                       (3.5) 

followed by   [u D B FuSecond
(k+1)

Second First
(k+1)= −−1 ] .                                       (3.6) 

 
If we define the vectors u  as the values of u being updated in the first stage (which belong to 
Strips 1 and 2 in Figure 2), while 

First
u  as the values of u in the second stage (in Strips 3 and 4), 

we can divide an iteration into two stages.  From (3.5)-(3.6), it is clear that the evaluations of u in 
each stage are independent and can be done in parallel. Each strip of two rows is assigned to a 
processor at a time.  This means there are (n-1)/2 strips of two rows to be distributed to the 

Second



processors. Each processor iterates on its own group of points and checks for its own local 
convergence.  After local convergence is achieved, a check for global convergence is made.  The 
evaluations of solutions at the remaining points (of type ) will be made only after global 
convergence is achieved by assigning each strip of two rows to a processor in natural order.   
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             Figure 2.   Ordering of group/block of points in Strategy 1 

Strategy 2 
In this strategy, the four-point groups are assigned to processors in  block ordering as shown below 
for the case n = 9.  As illustrated in Figure 3, the iteration are firstly done on the blocks A1, A2, A3, 
A4 in parallel, followed by B1, B2, B3, B4,  then C1, C2, C3, C4 and  finally D1, D2, D3, D4 , all in 
parallel.  By assigning the blocks this way, it may be proven that the computations involved are 
independent of each other and can be done in parallel.   
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              Figure 3.    Ordering of group/block of points in Strategy 2 

With the group ordering as shown in Figure 3, the system of equations that represents the 
calculation of solutions at the points  is as shown in the system (3.7)-(3.8): 
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with R0 and R1 as defined in (3.2).  Define the vectors u First = ( ) , T
AAAA 4321

u,u,u,u uSecond  = 

( )TBBBB 4321
u,u,u,u , uThird = ( )TCCCC 4321

u,u,u,u , uFourth = ( T
DDDD 4321

u,u,u,u ) are the values of u in 
the first, second, third and fourth stages respectively.  Here, 

iAu
iBu ,

iCu  and 
iDu  are the coupled 

values of u contained in each block Ai, Bi, Ci and Di respectively as depicted in Figure 3.  The 
system (3.7) can be solved via Gauss-Seidel iteration as 
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Thus, an iteration is split into four stages where the computations within each stage is independent  
and can be done in parallel.  
 
4. IMPLEMENTATION ON MESSAGE PASSING SYSTEM 
 
A parent-child model consisting of one parent process and one or more than one child processes is 
used in distributing the tasks [9].  The main responsibility of the parent process is to spawn the 
child processes, distribute the data to the processes evenly, collect the computed data and print out 
the results.  In addition to these, the parent process will also be involved in the computation 
processes and will not be left idle.  Whilst the child processes will receive the spawned tasks, 
compute the data, and send the computed data to the parent. Referring to Figures 2-3 the parallel 
iteration of (3.5)-(3.6) will require that we first update the grid points on the strips 1 and 2, 
followed by the updates on strips 3 and 4.  But the updates on strip 1 (strip 2) require the values at 
grid points on the strip 3 (strip 4) which  may be located in other processors.  So these values from 
other processors must be transmitted to the right processors to achieve the correct results.  
    
4.1  Data Decomposition and Communication Processes for Strategy 1    
 
In this strategy, the horizontal strips of two rows in Figure 2 are distributed evenly to the available 
processors  at each stage. If the nodal point in a particular strip is on the boundary of a subdomain 
held by a particular processor, then the updated values will have to be exchanged with processors 
holding adjacent subdomains after each stage in one iteration.  In summary there are 2 basic cases 
which represent the process of distributing the strips to the processors.  As an illustration, suppose b 
is the number of strips for one processor, Figures 4 and 5 illustrate the communications patterns 



which take place during the updates of points belonging to the Ai and Bi strips respectively when 
the number of processors is 3.      The first case, b = 2k, (k = 1,2,3,4, … ) shows the communication 
patterns needed for the computations involved when the number of strips per process is even.  
Meanwhile the second diagram illustrates for the case when the number of strips per process is odd 
(b = 2k+1).  
 

 

Figure 4.  Communications patterns between adjacent subdomains in updating the Ai and  Bi strips 
 for the case b = 2k  (for illustration, here b = 2); communication pattern is the same for all processes 

b) The updates of the Bi strips during Stage 2  a) The updates of the Ai strips during  Stage 1 
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a) The updates of the Ai strips during  Stage 1 b) The updates of the Bi strips during Stage 2  

Figure 5.  Communications patterns between adjacent subdomains in updating the Ai and Bi strips for the 
case b = 2k+1 (for illustration, here b = 3); communication pattern is not the same for all processes 
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a) The updates of the Ai & Ci strips during  Stages 1 & 3 b) The updates of the Bi & Di strips during Stage 2 & 4  

  
Figure 6.  Communications patterns between adjacent subdomains in updating the strips for Strategy 2(b=2k)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
b) The updates of the Bi & Di strips during Stage 2 & 4  a) The updates of the Ai & Ci strips during  Stages 1 & 3 
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Figure 7. Communications patterns between adjacent subdomains in updating the strips for Strategy 2(b=2k+1)  
 
4.2  Data Composition and Communication Processes for Strategy 2 
 
Similar to Strategy 1, the problem impose different communications patterns amongst the 
processors in updating the points in the strips when using this strategy.   Figures 6(a) and 6(b) 
illustrates the communication patterns needed in updating the blocks using Strategy 2 when the 



number of strips per processor is even.   Figure 7(a) and 7(b) illustrate the receive-send messages 
needed for the odd case (b = 2k+1) when updating the perspective blocks.  
 
5. NUMERICAL EXPERIMENTATION 
 
To study the performance of the algorithms, the Poisson equation on the unit square with Dirichlet 
boundary conditions was used.  The model problem chosen was 
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with the boundary conditions satisfying its exact solution 
   .   xyeyxu =),(
The experiments were ported to run on a cluster of Sun workstations at the School of Computer 
Science, USM. The SunOS Release 5.7 Generic software was used as the operating system 
supporting the PVM software [7].  In spawning the tasks to the available processors, equal number 
of strips (where each strip consists of 2 rows) will be distributed to each processor for each 
strategy.  Due to the way the points were grouped, the choice of grid size n is a bit restrictive to 
ensure that each processor gets equal number of strips at a time i.e. in order to achieve load 
balancing.   For processors equal to 1, 2, 3, 4, 5 and 6 (due to some technical difficulties, larger 
number of processors were not used in this experiment), we only considered the value of n starting 
from 121 with the incremental size of 120.  Multiple of 120 was chosen because these numbers will 
ensure that each processor gets equal number of strips whether the number of strip per processor is 
even or odd. The acceleration parameter ω  was chosen to within  that provides the most 
rapid convergence for each strategy.  The local termination test used was the average error test with 
tolerance ε  .  

01.0±

-51.0x10 = 
 
6. RESULTS AND DISCUSSION 
 
Table 1 depicts the CPU-times in seconds, speedup (Sp = T1/Tp, where Ti is the execution time 
when i number of processors are used), efficiency (Ep = Sp/p), error between the exact and 
computed solution, and the temporal performance (work per second) for EDG method obtained 
using Strategy 1 and 2.  To compare the performance of different algorithms for solving the same 
problem, the temporal performance metric is used.  The temporal performance metric is defined to 
be the inverse of the execution time T, i.e. RT = T-1 where RT is solutions per second (sol/s) or 
timesteps per second (tstep/s) (Hockney 1996).  The algorithm with the highest performance 
executes in the least time and and therefore the better algorithm regardless of the amount of 
arithmetic involved.  P and Effi. represent the number of processors and efficiency values 
respectively.  As depicted in the table, we can see that as the grid sizes increases, the computation 
gets large which improves the speedup values for EDG.  It may also be observed that in Figures 5 
and 7, that is when the number of strips per processor is odd, more communication overheads is 
incurred.  This is portrayed in the case n = 601 in Figure 8 where the performance deteriorates 
slightly when p = 4 in both strategies with Strategy 2 being the worst one among the two. This 
happens because the value of b is 75, which is odd, which means that  each processor gets 75 strips 
to process.  The distribution of tasks will then be of the case b = 2k+1, where the communication 
pattern is not the same for each processor.  There will be processors having to spend 2 units of 
time; first for sending messages downward and the second to upward adjacent cells in Stage1. Then 



for Stage 2, they have to spend another 2 units of time; first to receive from the lower adjacent 
cells, then the second from the upper cells.  All together this makes up 4 units of time per iteration.  
These are the processors which were assigned tasks in the middle part of the grid.  At the same 
time, there are processors which need only spend 1 unit of time to receive messages in Stage 1, and 
another unit of time to send messages in Stage 2 which makes up 2 units of times per iteration. As a 
result, there will be processors which remain idle for a few seconds which dampens the 
performance level.  This phenomena is worst in Strategy 2 because of the four stages involved in 
this strategy.  But in all other cases tested, the value of b is even such that the idle time problem is 
not that significant.  
 
   Table 1:  Performance of both parallel strategies of EDG 

Strategy 1 Strategy 2 
Grid 
size 

P Times(sec) Error Iter Speed
up 

Effi. Work/ 
secs 

Grid 
size 

Times(sec) Error Iter Speed
up 

Effi. Work/ 
secs 

n=121 1 1.378989 0.000057 143 1.000 1.000 0.72517 n=121 1.465820 0.000064 146 1.000 1.000 0.68221 
w :  2 1.242990 0.000057 143 1.109 0.555 0.80451 w :  1.512552 0.000064 146 0.969 0.485 0.66113 
1.9201 3 1.175001 0.000057 143 1.174 0.391 0.85106 1.9210 1.198028 0.000064 146 1.224 0.408 0.83471 
 4 1.218844 0.000057 143 1.131 0.283 0.82045  1.595992 0.000064 146 0.918 0.230 0.62657 
 5 1.369049 0.000057 143 1.007 0.201 0.73043  1.787144 0.000064 146 0.820 0.164 0.55955 
 6 1.704507 0.000057 143 0.809 0.135 0.58668  2.201464 0.000064 146 0.666 0.111 0.45424 
n=241 1 10.621968 0.000086 277 1.000 1.000 0.09414 n=241 11.455046 0.000075 284 1.000 1.000 0.08730 
w :  2 6.272446 0.000086 277 1.693 0.847 0.15943 w :  7.217392 0.000075 284 1.587 0.794 0.13855 
1.9581 3 5.027715 0.000086 277 2.113 0.704 0.19890 1.9583 6.046659 0.000075 284 1.894 0.631 0.16538 

 4 4.317121 0.000086 277 2.460 0.615 0.23164  5.232187 0.000075 284 2.189 0.547 0.19112 
 5 4.172730 0.000086 277 2.546 0.509 0.23965  5.523861 0.000075 284 2.074 0.415 0.18103 
 6 4.501096 0.000086 277 2.360 0.393 0.22217  7.487307 0.000075 284 1.530 0.255 0.13356 

n=361 1 35.550673 0.000121 410 1.000 1.000 0.02813 n=361 38.329987 0.00006 421 1.000 1.000 0.02609 
w :  2 19.679913 0.000121 410 1.806 0.903 0.05081 w :  22.161947 0.00006 421 1.730 0.865 0.04512 
1.9712 3 15.145524 0.000121 410 2.347 0.782 0.06603 1.9712 16.672556 0.00006 421 2.299 0.766 0.05998 

 4 12.666251 0.000121 410 2.807 0.702 0.07895  15.928657 0.00006 421 2.406 0.602 0.06278 
 5 11.146566 0.000121 410 3.189 0.638 0.08971  13.614610 0.00006 421 2.815 0.563 0.07345 
 6 10.692294 0.000121 410 3.325 0.554 0.09353  16.373404 0.00006 421 2.341 0.390 0.06107 

n=481 1 83.152665 0.000254 536 1.000 1.000 0.01203 n=481 89.756201 0.000204 550 1.000 1.000 0.01114 
w :  2 44.505460 0.000254 536 1.868 0.934 0.02247 w :  48.895314 0.000204 550 1.836 0.918 0.02045 
1.9782 3 32.208955 0.000254 536 2.582 0.861 0.03105 1.9781 35.180070 0.000204 550 2.551 0.850 0.02843 

 4 25.922891 0.000254 536 3.208 0.802 0.03858  29.901118 0.000204 550 3.002 0.750 0.03344 
 5 22.698175 0.000254 536 3.663 0.733 0.04406  27.705918 0.000204 550 3.240 0.648 0.03609 
 6 21.245177 0.000254 536 3.914 0.652 0.04707  26.420143 0.000204 550 3.397 0.566 0.03785 

n=601 1 162.104721 0.000567 667 1.000 1.000 0.00617 n=601 178.810449 0.00058 691 1.000 1.000 0.00559 
 w : 2 85.287735 0.000567 667 1.901 0.950 0.01173  w : 93.091039 0.00058 691 1.921 0.960 0.01074 
1.9823 3 60.549126 0.000567 667 2.677 0.892 0.01652 1.9822 65.894069 0.00058 691 2.714 0.905 0.01518 
 4 48.960110 0.000567 667 3.311 0.828 0.02042  58.454436 0.00058 691 3.059 0.765 0.01711 
 5 41.021602 0.000567 667 3.952 0.790 0.02438  48.618808 0.00058 691 3.678 0.736 0.02057 
 6 37.402440 0.000567 667 4.334 0.722 0.02674  45.790005 0.00058 691 3.905 0.651 0.02184 

 
 
7. CONCLUSION      
 
In this work, we presented the experimental results illustrating the parallel implementations of the 
group explicit elliptic solver, EDG, on a cluster of workstations using PVM.  Two parallelising 
strategies were developed in distributing the computations involved to the available processors. 
Between the two strategies, it is observed that the execution timings for Strategy 1 is less than 
Strategy 2 in all of the cases tested.  This is due to the fact that the latter strategy impose more 
communication overheads in receiving and sending messages for the four stages involved in this 
strategy than the overheads incurred in the former strategy.  It is also observed that the speedup and 
efficiency values for Strategy 1 are slightly better than Strategy 2 in almost all of the cases tested 
which indicates the amount of computations carried out over the total overheads in Strategy 1 is 
greater than the one in Strategy 2.  In general, the two algorithms developed turned out to be 
relatively efficient and viable to be ported on a distributed system with Strategy 1 being the best 
one.   
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   Figure 8 : Temporal performance of EDG when grid size n = 601 
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