
On Implementing An Efficient Iterative Elliptic Solver
On A Distributed Parallel System

1Norhashidah Hj. Mohd. Ali, 2Rosni Abdullah, 3Kok Jun Lee, 4Kong Chin Hua
1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia; e-mail: shidah@cs.usm.my

2,3,4School of Computer Science, Universiti Sains Malaysia, 11800 Penang, Malaysia; e-mail: rosni@cs.usm.my

Abstract. In Abdullah (1991), the use of finite difference discretization derived from the rotated (cross)
five-point formula [4] in approximating the elliptic equation resulted in a new improved group explicit
algorithm, the Explicit Decoupled Group (EDG) method, where the new algorithm was found to be more
superior than the explicit methods due to Yousif and Evans (1986). This new iterative algorithm has been
developed to be run on the Sequent Balance, a shared memory parallel computer ([2], [3], [11]) where it was
shown to be viable to be implemented on this type of platform. In this paper, we describe our effort in
parallelising this method in solving the two dimensional Poisson equation on a newer parallel paradigm; the
distributed parallel system. Communication issues between processors have to be taken into account since
data or information are transferred between processors via message passing. Several strategies are proposed
on parallelising this method on a cluster of Sun workstations; the results of some computational experiments
will be reported.

Keywords: Parallel computing; Poisson equation; rotated finite difference; Explicit Decoupled Group (EDG)
method; Parallel Virtual Machine (PVM)

1. INTRODUCTION

A new concept of explicit methods, pointwise or groupwise, was extensively researched during the
mid 1980’s as they possess qualities which makes them amenable for use on parallel computers.
Such attempts include Evans and Abdullah(1983), and Yousif and Evans(1986), who developed the
group explicit methods for the solution of parabolic and elliptic p.d.e.’s respectively. The method
was further developed as the Alternating Group Explicit (AGE) method (Evans & Sahimi, 1988),
which is an analogue to the famous Alternating Direction Implicit(ADI) method but has the
advantage of being explicit and thus very easy to parallelise. Since then, the emergence of newer
explicit methods with promising and improved results was greatly observed. Among them are the
works of Abdullah (1991) and Yousif & Evans (1995) who developed the four-point Explicit
Decoupled Group (EDG) and six to nine-point EDG method respectively in solving the elliptic
equation by discretising the p.d.e.’s on rotated grids. In this paper, we study the parallel
implementation of the four-point EDG method in solving the two dimensional steady-state elliptic
equation on a message passing architecture as a way to further improve the performance of the
method. A brief description of the iterative method studied is presented in Section 2. In Sections 3
and 4, we discuss the strategies used for parallelising the method and Section 5 presents the results
of experiments performed.

2. THE EXPLICIT DECOUPLED GROUP (EDG) ITERATIVE METHOD

Consider the finite difference discretization schemes for solving the Poisson equation

 (2.1) ,),(),,(Ω∈=+ yxyxfuu yyxx

with Dirichlet boundary conditions . Here is a continuous unit
square solution domain. This problem typically arises in the electrostatic, heat conduction, and
fluid mechanics areas, among others. Let Ω be discretized uniformly in both x and y directions
with a mesh size h = 1/n, where n is an integer. In solving this problem using the finite difference
method, Equation (2.1) may be approximated at the point (in many ways. The simplest
approximation will result in the following:

Ω∂∈=),(),,(),(yxyxgyxu

x yi ,

Ω

)

)

j

 . (2.2) ij
2

ij j1,-i j1,+i 1-ji, 1j+i, 4 fhuuuuu =−+++

Here, u u . This formula is so commonly used that it is known as the five-point difference
appproximation. Another difference approximation is (Dahlquist & Bjorck, 1974)

(x yij i j= ,

 . (2.3) ij
2

ij1j+1,-i1-j1,+i1-j1,-i1j+1,+i 24 fhuuuuu =−+++

This approximation is used in the derivation of the four-point EDG iterative method (Abdullah
1991; Yousif & Evans 1995). Let us now assume that the solution at any four points of the solution
domain can be solved using the rotated five-point finite difference approximation (2.3). This will
result in a (4x4) system of equations

 (2.4)





















−++
−++
−++
−++







































1
2

21121

1
2

12121

11
2

2222

2
111111

1

1

11

2
2

2
2

4 1-0 0
1-4 0 0
0 0 4 1-
0 0 1-4

i,j+,j+i+,ji-,j+i-

,ji+,j+i+,j-i+i,j-

,j+i+,j+i+,ji+i,j+

ij,j+i-,j-i+,j-i-

i,j+

,ji+

,j+i+

ij

fhuuu
fhuuu

fhuuu
fhuuu

 =

u
u

u
u

which can be written in a decoupled system of (2x2) equations whose explicit forms are given by













−++
−++


















11
2

2222

2
111111

11 2
2

41
14

15
1

,j+i+,j+i+,ji+i,j+

ij,j+i-,j-i+,j-i-

,j+i+

ij

fhuuu
fhuuu

 =
u

u
 (2.5)

and













−++
−++














 ++

1
2

21121

1
2

12121

1

1

2
2

41
14

15
1

i,j+,j+i+,ji+,j+i-

,ji,j+i-,j-i+i,j-

i,j+

,ji

fhuuu
fhuuu

 = u
u (2.6)

It may be observed that the above two equations and their corresponding computational molecule
(Figure 1) that the evaluation of (2.5) involves points of type only, while (2.6) can be evaluated
involving points of type only. Thus, the calculations of (2.5) and (2.6) can be carried out
independently which may save the execution time by nearly half if the iteration is carried out on

Figure 1. Groups of four points for EDG

only one type of points; either the type or . After convergence is achieved, the solution at the
other remaining half of the points will be evaluated directly once using the standard five-point
formula (2.2).

3. PARALLELISING STRATEGIES

Strategy 1
In this strategy, the rectangular domain is decomposed into a number of horizontal strips consisting
of two rows arranged in the order shown in Figure 2 for the case n = 9. Assuming the iteration
involves points of type only, the system of equations that represents the evaluation of solutions at
these points using formulae (2.5) on these ordered horizontal strips, is as shown in (3.1)-(3.2):



































































Strip4

Strip3

Strip2

Strip1

Strip4

Strip3

Strip2

Strip1

b
b

b
b

 =

u
u

u
u

D0L0
0DVL

VLD0
0V0D

LL

M

M

LLLLL

M

M

 (3.1)

where

 D =

R R
R R R

R R R
R R

 L =

R R
R R

R R
R

 V = L

0 1

1
T

0 1

1
T

0 1

1
T

0

1 1

1 1

1 1

1

T

































, ,

with

 . (3.2) R = 4 -1
-1 4 and R = 0 0

-1 00 1












The system (3.1) can be rewritten as

D C

F D

u

u
 =

B

B

First

Second

First

Second

M
L L L

M
L L




































. (3.3)

Applying the Gauss-Seidel iteration to (3.3), we have

D 0

F D

u

u
 =

B

B

C

0 0

u

u

First

Second

(k+1)
First

Second

First

Second

(k)
M

L L L
M

L L
M

L L L
M

L



































−
























0
, (3.4)

so that
 [B CuFirst

(k+1)
First Second

(k)= −−1]u D , (3.5)

followed by [u D B FuSecond
(k+1)

Second First
(k+1)= −−1] . (3.6)

If we define the vectors u as the values of u being updated in the first stage (which belong to
Strips 1 and 2 in Figure 2), while

First
u as the values of u in the second stage (in Strips 3 and 4),

we can divide an iteration into two stages. From (3.5)-(3.6), it is clear that the evaluations of u in
each stage are independent and can be done in parallel. Each strip of two rows is assigned to a
processor at a time. This means there are (n-1)/2 strips of two rows to be distributed to the

Second

processors. Each processor iterates on its own group of points and checks for its own local
convergence. After local convergence is achieved, a check for global convergence is made. The
evaluations of solutions at the remaining points (of type) will be made only after global
convergence is achieved by assigning each strip of two rows to a processor in natural order.

 B1 B2 B3 B4 Strip 4

 A1 A2 A3 A4 Strip 2

 B1 B2 B3 B4 Strip 3

 A1 A2 A3 A4 Strip 1

 Figure 2. Ordering of group/block of points in Strategy 1

Strategy 2
In this strategy, the four-point groups are assigned to processors in block ordering as shown below
for the case n = 9. As illustrated in Figure 3, the iteration are firstly done on the blocks A1, A2, A3,
A4 in parallel, followed by B1, B2, B3, B4, then C1, C2, C3, C4 and finally D1, D2, D3, D4 , all in
parallel. By assigning the blocks this way, it may be proven that the computations involved are
independent of each other and can be done in parallel.

 D3 B3 D4 B4

 A3 C3 A4 C4

 D1 B1 D2 B2

 A1 C1 A2 C2

 Figure 3. Ordering of group/block of points in Strategy 2

With the group ordering as shown in Figure 3, the system of equations that represents the
calculation of solutions at the points is as shown in the system (3.7)-(3.8):

D C E F
C D F E
E F D H
F E H D

u
u
u
u

 =
B
B
B
B

T T T

T

T T

First

Second

Third

Fourth

First

Second

Third

Fourth













































 (3.7)

where D =

R
R

R
R

 C =
R
R

R R
 , E =

R
R R

R
R R

0

0

0

0

1

1

1 1

1

1
T

1

1

1
T

1

















































, ,

 , (3.8) F =

R
R

R R
R R

 and H =

R
R
R R

R

1

1

1 1

1 1

1

1

1 1

1

































with R0 and R1 as defined in (3.2). Define the vectors u First = () , T
AAAA 4321

u,u,u,u uSecond =

()TBBBB 4321
u,u,u,u , uThird = ()TCCCC 4321

u,u,u,u , uFourth = (T
DDDD 4321

u,u,u,u) are the values of u in
the first, second, third and fourth stages respectively. Here,

iAu
iBu ,

iCu and
iDu are the coupled

values of u contained in each block Ai, Bi, Ci and Di respectively as depicted in Figure 3. The
system (3.7) can be solved via Gauss-Seidel iteration as

 []u D B Cu Eu FuFirst

(m+1) -1
First Second

(m)
Third
(m)

Fourth
(m)= − − −

 []u D B C u F u E uSecond
(m+1) -1

Second
T

First
(m+1) T

Third
(m) T

Fourth
(m)= − − −

 []u D B E u Fu HuThird
(m+1) -1

Third
T

First
(m+1)

Second
(m+1)

Fourth
(m)= − − −

 []u D B F u Eu H uFourth
(m+1) -1

Fourth
T

First
(m+1)

Second
(m+1) T

Third
(m+1)= − − − . (3.9)

Thus, an iteration is split into four stages where the computations within each stage is independent
and can be done in parallel.

4. IMPLEMENTATION ON MESSAGE PASSING SYSTEM

A parent-child model consisting of one parent process and one or more than one child processes is
used in distributing the tasks [9]. The main responsibility of the parent process is to spawn the
child processes, distribute the data to the processes evenly, collect the computed data and print out
the results. In addition to these, the parent process will also be involved in the computation
processes and will not be left idle. Whilst the child processes will receive the spawned tasks,
compute the data, and send the computed data to the parent. Referring to Figures 2-3 the parallel
iteration of (3.5)-(3.6) will require that we first update the grid points on the strips 1 and 2,
followed by the updates on strips 3 and 4. But the updates on strip 1 (strip 2) require the values at
grid points on the strip 3 (strip 4) which may be located in other processors. So these values from
other processors must be transmitted to the right processors to achieve the correct results.

4.1 Data Decomposition and Communication Processes for Strategy 1

In this strategy, the horizontal strips of two rows in Figure 2 are distributed evenly to the available
processors at each stage. If the nodal point in a particular strip is on the boundary of a subdomain
held by a particular processor, then the updated values will have to be exchanged with processors
holding adjacent subdomains after each stage in one iteration. In summary there are 2 basic cases
which represent the process of distributing the strips to the processors. As an illustration, suppose b
is the number of strips for one processor, Figures 4 and 5 illustrate the communications patterns

which take place during the updates of points belonging to the Ai and Bi strips respectively when
the number of processors is 3. The first case, b = 2k, (k = 1,2,3,4, …) shows the communication
patterns needed for the computations involved when the number of strips per process is even.
Meanwhile the second diagram illustrates for the case when the number of strips per process is odd
(b = 2k+1).

Figure 4. Communications patterns between adjacent subdomains in updating the Ai and Bi strips
 for the case b = 2k (for illustration, here b = 2); communication pattern is the same for all processes

b) The updates of the Bi strips during Stage 2 a) The updates of the Ai strips during Stage 1

Bi strip

Ai strip

Bi strip

Ai strip

Bi strip

Ai strip

Bi strip

Ai strip

Ai strip

Bi strip

Ai strip

Bi strip

Ai strip

Bi strip

Ai strip

Bi strip

Ai strip

Ai strip

Bi strip

Ai strip

Bi strip

Ai strip

Bi strip

Bi strip

Ai strip

Ai strip

Ai strip

Ai strip

P2

P1

P1

P2

P3

P3

 Bi strip Bi strip

a) The updates of the Ai strips during Stage 1 b) The updates of the Bi strips during Stage 2

Figure 5. Communications patterns between adjacent subdomains in updating the Ai and Bi strips for the
case b = 2k+1 (for illustration, here b = 3); communication pattern is not the same for all processes

Ai & Ci Strips

Ai & Ci Strips

Ai & Ci Strips

Ai & Ci Strips

Ai & Ci Strips

Bi & Di Strips

Bi & Di Strips

Bi & Di Strips

Bi & Di Strips

Ai & Ci Strips

 Bi & Di Strips Bi & Di Strips

a) The updates of the Ai & Ci strips during Stages 1 & 3 b) The updates of the Bi & Di strips during Stage 2 & 4

Figure 6. Communications patterns between adjacent subdomains in updating the strips for Strategy 2(b=2k)

b) The updates of the Bi & Di strips during Stage 2 & 4 a) The updates of the Ai & Ci strips during Stages 1 & 3

 Ai & Ci Strips

 Bi & Di Strips

 Ai & Ci Strips

 Bi & Di Strips

 Ai & Ci Strips

 Bi & Di Strips

 Ai & Ci Strips

 Bi & Di Strips

 Ai & Ci Strips

 Ai & Ci Strips

 Bi & Di Strips

 Ai & Ci Strips

 Bi & Di Strips

 Ai & Ci Strips

 Bi & Di Strips

 Ai & Ci Strips

 Bi & Di Strips

 Ai & Ci Strips

Figure 7. Communications patterns between adjacent subdomains in updating the strips for Strategy 2(b=2k+1)

4.2 Data Composition and Communication Processes for Strategy 2

Similar to Strategy 1, the problem impose different communications patterns amongst the
processors in updating the points in the strips when using this strategy. Figures 6(a) and 6(b)
illustrates the communication patterns needed in updating the blocks using Strategy 2 when the

number of strips per processor is even. Figure 7(a) and 7(b) illustrate the receive-send messages
needed for the odd case (b = 2k+1) when updating the perspective blocks.

5. NUMERICAL EXPERIMENTATION

To study the performance of the algorithms, the Poisson equation on the unit square with Dirichlet
boundary conditions was used. The model problem chosen was

 xyeyx
y
U

x
U)(22

2

2

2

2

+=
∂
∂

+
∂
∂ , (5.1))1,0()1,0(, xyx =Ω∈

with the boundary conditions satisfying its exact solution
 . xyeyxu =),(
The experiments were ported to run on a cluster of Sun workstations at the School of Computer
Science, USM. The SunOS Release 5.7 Generic software was used as the operating system
supporting the PVM software [7]. In spawning the tasks to the available processors, equal number
of strips (where each strip consists of 2 rows) will be distributed to each processor for each
strategy. Due to the way the points were grouped, the choice of grid size n is a bit restrictive to
ensure that each processor gets equal number of strips at a time i.e. in order to achieve load
balancing. For processors equal to 1, 2, 3, 4, 5 and 6 (due to some technical difficulties, larger
number of processors were not used in this experiment), we only considered the value of n starting
from 121 with the incremental size of 120. Multiple of 120 was chosen because these numbers will
ensure that each processor gets equal number of strips whether the number of strip per processor is
even or odd. The acceleration parameter ω was chosen to within that provides the most
rapid convergence for each strategy. The local termination test used was the average error test with
tolerance ε .

01.0±

-51.0x10 =

6. RESULTS AND DISCUSSION

Table 1 depicts the CPU-times in seconds, speedup (Sp = T1/Tp, where Ti is the execution time
when i number of processors are used), efficiency (Ep = Sp/p), error between the exact and
computed solution, and the temporal performance (work per second) for EDG method obtained
using Strategy 1 and 2. To compare the performance of different algorithms for solving the same
problem, the temporal performance metric is used. The temporal performance metric is defined to
be the inverse of the execution time T, i.e. RT = T-1 where RT is solutions per second (sol/s) or
timesteps per second (tstep/s) (Hockney 1996). The algorithm with the highest performance
executes in the least time and and therefore the better algorithm regardless of the amount of
arithmetic involved. P and Effi. represent the number of processors and efficiency values
respectively. As depicted in the table, we can see that as the grid sizes increases, the computation
gets large which improves the speedup values for EDG. It may also be observed that in Figures 5
and 7, that is when the number of strips per processor is odd, more communication overheads is
incurred. This is portrayed in the case n = 601 in Figure 8 where the performance deteriorates
slightly when p = 4 in both strategies with Strategy 2 being the worst one among the two. This
happens because the value of b is 75, which is odd, which means that each processor gets 75 strips
to process. The distribution of tasks will then be of the case b = 2k+1, where the communication
pattern is not the same for each processor. There will be processors having to spend 2 units of
time; first for sending messages downward and the second to upward adjacent cells in Stage1. Then

for Stage 2, they have to spend another 2 units of time; first to receive from the lower adjacent
cells, then the second from the upper cells. All together this makes up 4 units of time per iteration.
These are the processors which were assigned tasks in the middle part of the grid. At the same
time, there are processors which need only spend 1 unit of time to receive messages in Stage 1, and
another unit of time to send messages in Stage 2 which makes up 2 units of times per iteration. As a
result, there will be processors which remain idle for a few seconds which dampens the
performance level. This phenomena is worst in Strategy 2 because of the four stages involved in
this strategy. But in all other cases tested, the value of b is even such that the idle time problem is
not that significant.

 Table 1: Performance of both parallel strategies of EDG

Strategy 1 Strategy 2
Grid
size

P Times(sec) Error Iter Speed
up

Effi. Work/
secs

Grid
size

Times(sec) Error Iter Speed
up

Effi. Work/
secs

n=121 1 1.378989 0.000057 143 1.000 1.000 0.72517 n=121 1.465820 0.000064 146 1.000 1.000 0.68221
w : 2 1.242990 0.000057 143 1.109 0.555 0.80451 w : 1.512552 0.000064 146 0.969 0.485 0.66113
1.9201 3 1.175001 0.000057 143 1.174 0.391 0.85106 1.9210 1.198028 0.000064 146 1.224 0.408 0.83471
 4 1.218844 0.000057 143 1.131 0.283 0.82045 1.595992 0.000064 146 0.918 0.230 0.62657
 5 1.369049 0.000057 143 1.007 0.201 0.73043 1.787144 0.000064 146 0.820 0.164 0.55955
 6 1.704507 0.000057 143 0.809 0.135 0.58668 2.201464 0.000064 146 0.666 0.111 0.45424
n=241 1 10.621968 0.000086 277 1.000 1.000 0.09414 n=241 11.455046 0.000075 284 1.000 1.000 0.08730
w : 2 6.272446 0.000086 277 1.693 0.847 0.15943 w : 7.217392 0.000075 284 1.587 0.794 0.13855
1.9581 3 5.027715 0.000086 277 2.113 0.704 0.19890 1.9583 6.046659 0.000075 284 1.894 0.631 0.16538

 4 4.317121 0.000086 277 2.460 0.615 0.23164 5.232187 0.000075 284 2.189 0.547 0.19112
 5 4.172730 0.000086 277 2.546 0.509 0.23965 5.523861 0.000075 284 2.074 0.415 0.18103
 6 4.501096 0.000086 277 2.360 0.393 0.22217 7.487307 0.000075 284 1.530 0.255 0.13356

n=361 1 35.550673 0.000121 410 1.000 1.000 0.02813 n=361 38.329987 0.00006 421 1.000 1.000 0.02609
w : 2 19.679913 0.000121 410 1.806 0.903 0.05081 w : 22.161947 0.00006 421 1.730 0.865 0.04512
1.9712 3 15.145524 0.000121 410 2.347 0.782 0.06603 1.9712 16.672556 0.00006 421 2.299 0.766 0.05998

 4 12.666251 0.000121 410 2.807 0.702 0.07895 15.928657 0.00006 421 2.406 0.602 0.06278
 5 11.146566 0.000121 410 3.189 0.638 0.08971 13.614610 0.00006 421 2.815 0.563 0.07345
 6 10.692294 0.000121 410 3.325 0.554 0.09353 16.373404 0.00006 421 2.341 0.390 0.06107

n=481 1 83.152665 0.000254 536 1.000 1.000 0.01203 n=481 89.756201 0.000204 550 1.000 1.000 0.01114
w : 2 44.505460 0.000254 536 1.868 0.934 0.02247 w : 48.895314 0.000204 550 1.836 0.918 0.02045
1.9782 3 32.208955 0.000254 536 2.582 0.861 0.03105 1.9781 35.180070 0.000204 550 2.551 0.850 0.02843

 4 25.922891 0.000254 536 3.208 0.802 0.03858 29.901118 0.000204 550 3.002 0.750 0.03344
 5 22.698175 0.000254 536 3.663 0.733 0.04406 27.705918 0.000204 550 3.240 0.648 0.03609
 6 21.245177 0.000254 536 3.914 0.652 0.04707 26.420143 0.000204 550 3.397 0.566 0.03785

n=601 1 162.104721 0.000567 667 1.000 1.000 0.00617 n=601 178.810449 0.00058 691 1.000 1.000 0.00559
 w : 2 85.287735 0.000567 667 1.901 0.950 0.01173 w : 93.091039 0.00058 691 1.921 0.960 0.01074
1.9823 3 60.549126 0.000567 667 2.677 0.892 0.01652 1.9822 65.894069 0.00058 691 2.714 0.905 0.01518
 4 48.960110 0.000567 667 3.311 0.828 0.02042 58.454436 0.00058 691 3.059 0.765 0.01711
 5 41.021602 0.000567 667 3.952 0.790 0.02438 48.618808 0.00058 691 3.678 0.736 0.02057
 6 37.402440 0.000567 667 4.334 0.722 0.02674 45.790005 0.00058 691 3.905 0.651 0.02184

7. CONCLUSION

In this work, we presented the experimental results illustrating the parallel implementations of the
group explicit elliptic solver, EDG, on a cluster of workstations using PVM. Two parallelising
strategies were developed in distributing the computations involved to the available processors.
Between the two strategies, it is observed that the execution timings for Strategy 1 is less than
Strategy 2 in all of the cases tested. This is due to the fact that the latter strategy impose more
communication overheads in receiving and sending messages for the four stages involved in this
strategy than the overheads incurred in the former strategy. It is also observed that the speedup and
efficiency values for Strategy 1 are slightly better than Strategy 2 in almost all of the cases tested
which indicates the amount of computations carried out over the total overheads in Strategy 1 is
greater than the one in Strategy 2. In general, the two algorithms developed turned out to be
relatively efficient and viable to be ported on a distributed system with Strategy 1 being the best
one.

0

0.005

0.01

0.015

0.02

0.025

0.03

1 2 3 4 5 6

Number of processors

W
or

k
pe

r s
ec

Strategy 1
Strategy 2

 Figure 8 : Temporal performance of EDG when grid size n = 601

Acknowledgement

The authors acknowledge the research grant (304/PMATHS/633054) provided by Universiti Sains
Malaysia, Penang that has resulted in this article.

References

1. Abdullah, A.R., 1991, The Four Point Explicit Decoupled Group (EDG) Method : A Fast Poisson Solver,

International Journal of Computer Mathematics., 38, 61-70.
2. Abdullah, A. R. and Ali, N. M., 1996, ‘The Comparative Study of Parallel Strategies For The Solution of

Elliptic PDE’s’, Parallel Algorithms and Applications. 10: 93-103.
3. Ali, N.H.M. and Abdullah, A.R., 1995, Parallel Four Point Explicit Decoupled Group (EDG) Method For

Elliptic PDE’s. Proceedings of the Seventh IASTED/ISMM International Conference on Parallel and
Distributed Computing and Systems, Washington D.C., pp. 302-304.

4. Dahlquist, G., and Bjorck, A., 1974, Numerical Methods. Englewood Cliffs, N.Jersey: Prentice-Hall.

5. Evans, D.J. and Abdullah, A. R., 1983, A New Explicit Method for the Solution of 2

2

2

2

y
u

x
u

t
u

∂

∂
+

∂

∂
=

∂
∂ ,

International Journal of Computer Mathematics, 14, pp. 325-353.
6. Evans, D.J. and Sahimi, M. S., 1988, The Alternating Group Explicit(AGE) Iterative Method for Solving

Parabolic Equations, 1-2 Dimensional Problems, International Journal of Computer Mathematics, 24, pp. 250-
281.

7. Geist, A. et al, 1994, PVM:Parallel Virtual Machine A Users’ Guide and Tutorial for Networked Parallel
Computing, MIT, Cambridge

8. Hockney, R.W., 1996, The Science of Computer Benchmarking, SIAM
9. Wilkinson, B. and Allen, M., 1999, Parallel Programming Techniques and Applications Using Networked

Workstations and Parallel Computers, Prentice Hall, New Jersey
10. Yousif, W.S. and Evans, D.J., 1986, Explicit group over-relaxation methods for solving elliptic partial

differential equations, Math. Computer Simulation, 28, p. 453-466.
11. Yousif, W.S. and Evans, D.J., 1995, Explicit DeCoupled Group Iterative Methods And Their Parallel

Implementations, Parallel Algorithms and Applications 7:53-71.

