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Abstract

This paper considers ‘instrumented activity’ in relation to the introduction of vector calculus in a
Year 12 class. The first lesson on the vector topic is described where the display from a student’s
graphics calculator was relayed onto the whiteboard via an overhead projector and other students
used their own calculators. An episode of whole-class discussion from the second lesson is
presented during which the teacher connected his own calculator to the overhead panel. Students
referred to the display as they suggested a variety of approaches for solving quadratic equations and
argued about the efficiency of calculator and calculus methods. The paper identifies appropriation
by students of their graphics calculators for effective problem solving and identifies how the
projected display from a calculator can enhance learning.

Introduction

Graphics calculators have been required equipment in Western Australian Tertiary Entrance
Examinations (TEE) in mathematics since 1998. The introduction of the calculators to the
examination was accompanied by widespread adoption of them for mathematics in schools, leading
to changes in classroom practice. This paper explores practices associated with the use of an
overhead projector to relay the display from a graphics calculator onto a whiteboard. The context of
the instrumented activity (Guin & Trouche, 1999) was the introduction of vector calculus in a Year
12 class, where the focus was analysing quadratic functions and solving quadratic equations.
Instrumented activity means tool use is integrated into activity.

I discuss the first two lessons on the vector calculus topic. In the first lesson, the teacher
outlined how vector and calculus concepts could be combined in the interpretation of parametric
graphs. A student supported the discussion by producing graphs on her graphics calculator, for
display on the whiteboard. The focus in the second lesson was projectile motion. An episode from
the lesson is reported which illustrates strategies for calculator use encouraged by the teacher,
limitations of calculator use, and students’ ability to argue! The teacher produced graphs on his own
calculator for display via the overhead projector. He had wide experience in teaching with
technology, all students had owned graphics calculators for nearly two years and some of them
were highly competent users.

The paper is part of a study of teaching/learning in the class over twenty-one lessons. The
teacher’s calculator or students’ calculators were routinely connected to the overhead projection
panel. This practice facilitated the development of new concepts (Forster & Taylor, 2002) and
allowed the teacher to encourage efficient problem solving methods and to conduct revision
(Forster, Taylor & Davis, 2002a, 2002b). This paper, like the ones just cited, contributes to the
small body of literature that directly addresses use of an overhead projector panel with hand-held
calculators (e.g., Doerr & Zangor, 2000; Guin & Trouche, 1999).



Instrumented Activity

Noss, Healy and Hoyles (1997) portray mathematics learning as a process where students forge
links between their actions and the numeric, geometric and symbolic representations that they
develop. Noss et al. hold that the mediums through which students express their mathematics (e.g.,
a computer) profoundly structure the mathematising process, and a problem is students do not link
mathematical understanding developed with a tool to understanding developed without it. Guin and
Trouche (1999) define the problem in relation to the use of graphic and symbolic calculators. First,
students do not allow for limitations of the graphical display. Second, students accept uncritically
that calculator outputs are valid when the tool cannot show the canonical properties. For instance,
students copy graphs from the screen to show curves stopping on asymptotes; and accept the
outputs for limits to infinity when the storage capacity of the calculator has been exceeded during
calculation. Drivjers (2000) describes related problems including students’ inability to (a) ‘help a
calculator’ when it does not produce results that are known to exist, (b) reconcile calculator
symbolic outputs and traditional (pencil and paper) notation, and (c) cope with decimal outputs
when exact values are needed. The internal limitations of the calculator, as well as syntax
requirements and the non-transparent organisation of processing capabilities can be barriers to
utilising the tool and can mediate negatively students’ learning. Furthermore, students need to be
aware of the calculation power of the tool in order to benefit from its efficiencies.

In general, tools become instruments when users appropriate them for the tasks that they
undertake. Guin and Trouche (1999) give an example of a teacher appropriating an overhead
projector and calculator projection panel, where he arranged for students to take turns sitting at the
front of the room for entire lessons and link their calculators to the panel. Students in this role were
observed to guide, assist and mediate class discussion. The set up “favoured classroom debates . . .
and was essential to counterbalancing the rather individualistic relationships students tend to have
with a small [calculator] screen” (p. 209). Use of the overhead influenced students’ actions and thus
influenced their learning.

Doerr and Zangor (2000) describe another configuration of the practice with the overhead
projector: a teacher encouraged students to come to the front of the room during class discussion, to
operate a calculator already attached to the panel. Furthermore, students often initiated the action.
Like Guin and Trouche (1999), Doerr and Zangor observed that the projected display supported
communication between students, whereas personal use of a calculator by students, even during
group work, led to individualised learning.

Goos, Galbraith, Renshaw and Geiger (2000) report other formats for utilisation of the
calculator-overhead combination in the classroom. For example, with an investigation of function
transformations, the teacher assigned different functions to small groups of students and, after
exploration, the groups explained and defended their conjectures using the projection panel as a
means of communication. At other times, the teacher demonstrated calculator operations via the
panel, and students displayed their partial solutions and completed them with class input.

In the Year 12 class that I observed, use of the calculator-overhead set up was flexible so that
sometimes a student’s calculator was linked to the panel and at other times the teacher’s calculator.
The panel had a long lead which could reach all students in their usual seats. When students were
‘plugged in’, as the teacher expressed it, the display variously supported teacher-led revision or
instruction (Forster, Taylor & Davis, 2002a, 2002b) or students took the initiative and shared
solutions that they had devised. Sometimes the teacher adopted an open, discursive style of
questioning (Forster & Taylor, 2002) and at other times he was more didactic. Both styles are
evident in the episode below.



Data Collection

I attended twenty-one 50-minute lessons in the Year 12 class, at an all-girls' college. I took the role
of an observer-participant, observing whole-class work and acting as an assistant teacher during
seatwork. I set a video-recorder to record continuously and included the display from the overhead
panel in the field of view. In addition, I audio-recorded the conversations of all 13 students in the
class. During seatwork, I made brief field notes of how students’ operated their calculators. They all
owned HP38G limited symbolic calculators. I transcribed the audio-recordings of all episodes of
whole-class work and these included one-to-one interactions between students. The transcripts were
the main source of data for this paper.

Instrumented Activity in Practice

Part 1: Preliminary work
In the first lesson on vector calculus in the Year 12 class, the teacher introduced the topic by asking
students to recall vector relationships for rectilinear motion from their Year 11 work. Then he drew
the graph of a straight line on the whiteboard, on i, j axes, and asked: “How can we bring in the
calculus”? Students guessed velocity and acceleration would be obtained using differentiation.
Next, the class revised how to plot the position vector ‘ jir )1(2)( −+= ttt ’ on their graphics
calculators (see Figure 1) and discussed how to choose the x, y and t ranges. Students favoured
resetting the calculator to the standard scale and using the autoscale facility, which adjusts the x and
y ranges to match the extremes produced in the t range (see Figures 1b-d). In addition, the teacher
described how to calculate the x and y scales using the components and t = 0 and t = 12, to yield the
domain of [0, 24] and range of [-1, 11] on the graph.

a   b   c   d 
Figure 1. Screen displays for graphing r tt 2)( = i + (t-1)j

During the revision a students’ calculator was linked to the overhead projection panel. The
rest of the class used their own calculators and could check their results against the projected
display. After obtaining the graph, the teacher asked the student who was ‘plugged in’, “Can you
just plot that again for us please” and asked the class “Can you look up here please. Watch it as it’s
plotting. What can you say about it slowing down or speeding up or anything else as it goes
across”? The rate at which the graph is plotted from left to right reflects the speed of a particle with
position vector r(t). Several students answered that the speed was constant.

Then, position vectors ‘ jir 22)( ttt += ’ and ‘ jir ttt cossin)( += ’, for parabolic and circular
motion which were new Year 12 content, were plotted. The teacher asked the class to observe and
comment on the parabolic motion. When students offered it was “going down” and “getting
quicker”, the teacher described how calculus would be used: “and the part of the calculus in this is
to work out when it [the plotting] speeds up, why it speeds up and all those things”. With the circle,
the teacher explained how to adjust the scales to avoid distortion (so the x range: y range = 2:1,
which is the ratio of the dimensions of the calculator screen). He also asked for the range of t that
would produce a single cycle (i.e., 2π); and asked the class to access the table of values and deduce



the Cartesian relationship between the x and y coordinates. Next the revision shifted to the
definition and meaning of magnitude and argument, and conventional and calculator syntax for
them; and finished with the vector equation of a straight line. Following the whole-class revision,
students started a textbook exercise that entailed pencil and paper methods, with opportunities for
calculator use. Part of the exercise was set for homework.

Hence, the teacher integrated analytical approaches and a visual approach on the calculator to
introduce the Year 12 vector calculus topic, and so modelled the integration that is recommended
(e.g., Guin & Trouche, 1999). In particular, while he agreed to use the autoscale facility on the
calculator for setting the scales for the straight line, he also encouraged students to determine the
scales using mathematics. Setting the scales is known to be a major source of error and difficulty
(Ward, 1997) so warrants the attention that it was given.

The functions for the i and j components were well chosen in that they illustrated each type of
path (parabolic etc.) that students would eventually encounter. Moreover, parametric graphing on a
calculator is 'realistic' in that the rate at which a graph is plotted reflects speed. Hence the graphs
potentially are valuable for understanding the mathematics of motion. 'Realism' is increased when
scales of a graph are set to preserve and not distort spatial relationships. Even so, students do not
always see (speed etc.) relationships that are obvious to the teacher so the broad overview was
important in that it introduced properties that would later be explored in detail.

Handwritten and calculator syntax were articulated (for vectors, magnitude etc.), which is
significant in view that translation between them can be problematic (Drivjers, 2000). The teacher’s
practice was to write all expressions in conventional syntax next to the calculator display on the
board, so equivalence was exhibited, for example between the vector form of the line

jir )1(2)( −+= ttt  and the corresponding parametric equations T*2X1(T) =  and 1TY1(T) −= . This
was one way instrumentation of whole-class discussion with the overhead projector functioned to
support students’ use of their calculators.

The table of values linked to the graph, another key calculator feature, was visited as well.
Hence, a calculator capability and the way to access it were discussed explicitly—and both these
aspects are important in establishing efficient calculator use.

The student whose calculator was lined to the panel sometimes pre-empted the teacher’s
instruction and sometimes acted in response to his suggestions. In the process, she (the student)
might have advanced her own expertise with the calculator. The whole-class work was highly
interactive: it evidenced the communal activity centred on the projected calculator display that is
noted in the literature (e.g., Doerr & Zangor, 2000). In addition, students who did not contribute to
class discussion were not just listening. They actively used their own calculators. In addition, some
discussed the work with each other and many made notes.

Part 2: Requirement for a sketch
In the second lesson on the vector topic the teacher set up the overhead projector with his own
calculator. Soon after the start of the lesson, he presented the situation of a stone being thrown from
the window of building. He specified the position vector: jir )9.41210(2)( 2tttt −++=  and asked:

T Its 4.9 t squared. Now, can anyone suggest why might be 4.9 t squared?
Sts Gravity
T A bit of gravity acting on it. So, part (a) . . . Plot the motion of the stone, please. Plot, sketch

the graph, to show the motion of the stone.

After looking to see students’ progress, the teacher said to the class:



T Can I suggest you plot the graph for about 6 seconds, and steps of about 0.1 usually works
(see Figure 2b).

The teacher continued to walk around the class and a student asked him one-to-one:
St 1. Can't we just go for like,
T However many seconds it takes to hit the ground.
St 1 Yes. Its much shorter.

Later, the teacher asked:
T Once again, set your t range and then what?
St 2 Autoscale.
T Put it into autoscale (see Figure 2c). Just a rough sketch is all I want.

a   b   c   d 
Figure 2. Screen displays for jir )9.41210(2)( 2tttt −++=

Again a visual approach was used and was possible because graphics calculators were available.
The teaching approach was to ask students to attempt the graphing and, when some appeared to
need support, the teacher suggested how to set the scales. The features on two students’ hand-drawn
graphs (based on sketches in my field notes and on conversation with the students) are shown in
Figure 3.
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Figure 3. The features shown on two students’ hand drawn graphs of jir )9.41210(2)( 2tttt −++=

The graph in Figure 3a was drawn by the student who asked about the range for t (St 1 above).
She used the POLYROOT function to solve for t when y = 0 (see Figure 4). POLYROOT produces
the roots of polynomial equations. She entered 0 to 3.106 for the t range in her calculator, then,
plotted the graph using autoscale: the x and y scales were automatically set so the turning point and
the endpoint at t = 3.106 were just visible. She copied the graph, read the y intercept on the screen
and calculated the x intercept (2 x 3.106) and added these to the hand-drawn graph. Her actions
seem to reflect Guin and Trouche’s (1999) definition of a resourceful work method, which entails
the use of a range of techniques and sources of information: sometimes observations prevail, at
other times theory is called on. Importantly, she chose the t range carefully, using the root of the
function for the j component, thus incorporating analytical understanding, but passed calculation to
the calculator. Hence, she took the given context into account to produce a realistic graph.



Figure 4. Solving 09.41210 2 =−+ tt  to yield the x intercept of the graph in Figure 3.

The student who drew the graph in Figure 3b used the 0-6 range for t that the teacher
suggested. She moved the cursor on the calculator graph to obtain an approximation for the x
intercept: t, x and y values are visible on the calculator screen (see Figure 2d). Thus, she did not
incorporate properties of the physical situation in her solution or determine the range of values for t
prior to applying the autoscale routine. Nor did she bring to bear symbolic or calculator methods to
improve the estimated x intercept, or copy the part of the graph that matched the situation. It seems
she did not predict or anticipate any aspect of the graph; or check her solution for consistency with
the given context, which are important aspects of calculator use. Her actions seem to reflect a
mechanical work method (Guin & Trouche, 1999), characterised by reliance on the calculator, with
no reconciliation to make the calculator model match reality. In fact, the student regularly took first
place in tests in the class, was strong in algebra, and on occasion I observed her using her calculator
judiciously. These are characteristics of a rational work method, as defined by Guin and Trouche,
where the student relies heavily on analytic methods; and of a theoretical work method, which
entails an even heavier emphasis on analytic approaches. Maybe the visual, calculator-based
approach that was promoted in this episode did not appeal to her; but nevertheless, she did follow
the teacher’s instruction to produce ‘just a rough sketch’.

Issues for pedagogy are (a) how to cater for students’ preferences, where approaches are to
include pencil and paper only tasks, and tasks where calculators can be chosen but are not specified
and (b) how to provoke a minds-on approach, whatever environment (calculator or pen and paper)
is intended. Asking students to attempt a graph allows opportunity for creativity. Asking them also
to bring in whatever mathematical knowledge they have so as to draw an accurate graph might
prompt some to advance beyond passive acceptance of calculator outputs. As well, for mathematics
to be meaningful, instructions should be given to take the 'real-life' contexts of questions into
account. In regard to context and the first lesson, the calculator graphs were dynamic and resembled
reality, but they were only representations of the real thing. With tasks of that type, students should
be encouraged to relate the characteristics of the graph to their real experiences--of seeing
projectiles and sensing changes in speed, for instance, in going around a bend in a car. Hence, a role
for the teacher in fostering instrumented activity is to encourage students to interpret tool outputs in
light of analytic understanding and of the context. Figure 3a indicates the outcomes when a student
has this orientation.

Part 3: Distinguishing processes on the calculator
The teacher plotted the graph on his own calculator and projected it onto the whiteboard. At this
stage, he asked for the meaning of the r(t) components in terms of the given context. Next, he asked
how the maximum height and the time when the stone hit the ground could be found, and students
answered “the maximum value for y” and “when y equals zero”. Then, a student asked:

St 3 But you don't get, like, the extremum and the roots [meaning you cannot read accurately the
coordinates of turning points and roots on the parametric graphing screen on the calculator].



St 4 Yes, you can. Not on that [indicating the display on the whiteboard], you have to go into
Function [where functions are plotted] and use the different parts of the equation.

St 3 But it isn't a function graph.
St 4 No, no, no.
St 5 She said you go into Function.
T You could go into Function, and which part do we enter?
St 4 That one [pointing to the j component of the r(t) expression written on the board], but you

use x's and y's [see Figure 5]
St 3 Oh.

a   b.  ….c   d 
Figure 5. Graphing 29.41210 tty −+=  as 29.41210 xxy −+=  and obtaining the root.

Thus, another calculator method was found for determining the y intercept. The display of the
parametric graph from the teacher’s calculator and his board work acted as coherence objects. They
scaffolded the conversation. The instrumentation facilitated the way Student 3’s query was
answered. The method involved graphing the j component as a function: t was replaced with x and
students needed to remember the horizontal coordinate on the graph represents time, which is
potentially confusing.

Part 4: A plethora of approaches
The exercise continued:

T Part (b) is when does the stone hit the ground and how far from the building is it at this time 
[writing the key phrases on the board]? So, it hits the ground when y = 0. Do we have any
plans to get the intercept? What are we going to do? We could solve it manually using the
quadratic equation. [The class laughs].

T Kate [St 1], which method are you going to use?
St 1 I used POLYROOT [see Figure 4].
T Anyone have any other methods they used on the calculator?
St 5 Solve [see Figure 6].
St 6 Draw it [see Figure 2? and Figure 5].

a     b 
Figure 6. Displays for solving 29.41210 tty −+=  with y = 0 using Solve.

T You could go to Solve but what’s the problem with using Solve sometimes, whoever said
that?

St 5 It only gives you one [solution] at a time.
T It only gives you one at a time so you have to?
St 1 But if you have already looked at the [parametric] graph you already know whereabouts it is

[so you can enter the approximate value for T prior to solving for T, see Figure 6b].



T Yes, if you have already looked at the graph. That’s so important. This looks like it’s about
three seconds [referring to the calculator display, see Figure 2b].

St 1 Just magically.
T Just magically.
St 1 Its 3.106 seconds.
St 3 Did you get that off there [indicating the display]?
St 1 No, I used POLYROOT earlier.
T With POLYROOT we get the answer straight away. It’s quicker. What do we get with

POLYROOT?
St 1  3.106
T Then, distance equals 6.212 metres [writing t = 3.106 and substituting into x = 2t on the

board].

With long-term calculator use, students typically develop preferred methods of solution that utilise
only a selection of the commands that they have met (Guin & Trouche, 1999). However, this does
not mean the most efficient and effective methods are chosen. Hence, important aspects of whole
class discussion in a calculator environment are discussing a range of methods and the limitations
and strengths of them. Here the teacher pointed to the limitation of the Solve facility, Student 5
defined the problem, then, Student 1 and the teacher established how to circumvent the problem.
Estimating the t value before utilising Solve is an instance of setting up the calculator to produce
appropriate answers, an aspect of calculator use in which Drivjers (2000) found students are
deficient.

Next, Student 1 challenged the Solve approach and restated her preference for POLYROOT.
The result was the teacher valued the POLYROOT approach over Solve with “It’s quicker”. Indeed,
the numerical POLYROOT approach requires only a single screen so is quicker than using Solve or
using the graph of Figure 5d. Numerical methods on the calculator seem to be given little attention
in the literature, even though they can be efficient. However, an advantage of using a graph together
with the automated ROOT finding facility is the cursor jumps onto the root, which allows students
to check visually that the value is appropriate (see Figure 5d).

Importantly, students in the Year 12 class frequently asked substantive questions about
mathematics and challenged the teacher and each other (see Forster, Taylor & Davis, 2002).
Reasons for the high participation were the teacher valued students’ answers by centring discussion
on them, which is illustrated above, and sometimes he commended students. Thus, many solution
approaches became available, not only the methods of the teacher and a few students.

Last, I mention the traditional approach using the quadratic equation was also mentioned, in a
tone that put it out of the question. I return to this stance in the next section and highlight it as
problematic.

Part 5: Introducing the calculus and arguments for efficiency
T Okay, part (c). What is the maximum height of the stone [writing the question on the

whiteboard]? Okay, how do we find the maximum height of the stone?
St 7 Find the maximum value of y.
T Okay part (c) is find the maximum value of y [writing it on the whiteboard as he speaks].

How are we going to find the maximum value of y?
St 7 Plot it.
T What do you mean plot it, Abi [St 7]?
St 7 Graph it.



T Whereabouts though?
St 7 In Function [see Figure 5, which shows the cursor on the maximum point].
T Okay. Listen, Remember there are sometimes more efficient ways. Can anyone think of a

quicker way of doing this?
St 2 It’s the turning point.
T Like it’s a quadratic. Can't we just differentiate it and make it equal to zero?
St 8 But its easier to plot it.
T Easier to plot it?
St 8 Yes, you just type it in.
T Shall we have a race?
St 8 I've done it [laughs].
T Surely [writing as he speaks] if I put ‘ dtdy /  = 12 - 9.8 t’. Solve that equals zero.

‘ 8.9/12=t ’. Surely that’s quicker than plotting it?
St 8 Yes, but you have got more chance of making a mistake there.
There is widespread chatter amongst the class about the issue.
T Surely that’s quicker . . . . Sally said wouldn't it have been quicker if we had plotted this

thing [pointing to the j component of r(t)] in the first place, she would already have had the
graph . . . So, Sally is probably quite correct to say if we had plotted this function in the first
place as an x, y function, it’s the quickest way to get extremum [or maximum point].

St 3 But that’s still not the quickest way [indicating his differentiation method on the board],
even though you haven’t plotted it.

St 1 No. Because you have to put it back. It makes it less accurate and it takes it longer.
T So now, y equals
St 8 See now, you are doing it [the substitution] manually.
T Okay, I have to concede defeat, partially.

So, calculus was introduced. I included the piece to entertain the reader and there is no room for
extended comment. However, the motivational aspects of lively debate need to be acknowledged,
although the calculator approaches were a distraction and asking students to use calculus might
have served the vector calculus topic better. A second aspect is students privileged (Kendal &
Stacey, 2001) calculator approaches, as the teacher and students did alike in Parts 1-4. Guin and
Trouche (1999) found, in tension with this, that a general attitude of using analytic methods and
supporting them with calculation on the calculator leads to more efficient integration of calculator
use in activity in the long term.

Conclusion

Instrumented activity in the two lessons extended to students using their own graphics calculators,
and the teacher and students taking advantage of the overhead-projector / calculator set-up (and, at a
more fundamental level, included appropriation of writing implements, paper, the whiteboard, etc.).
The projected display supported students’ individual calculator use and scaffolded shared activity: it
was at the centre of discussion on setting up and using the calculators, was the means for the teacher
to model desirable calculator practices and identify calculator capabilities, and the students and
teacher referred to the display when discussing mathematics relationships.

An emergent issue in the analysis of the two lessons was the privileging of graphics calculator
approaches. First, the visual approach with parametric graphs seemed to serve the introduction of
vector motion well. Second, an implication of the last excerpt is that sometimes students’



suggestions for calculator methods warrant being strongly disputed so that the class is not distracted
from making mathematical progress. Moreover, on the basis of the variation in quality of two
students' calculator assisted solutions, recommendations are to direct students to bring in
mathematical knowledge and to take into account given contexts when problem-solving with the
calculators.

In conclusion, I suggest other aspects of the action which supported students’ learning well
were the teacher made explicit and had students identify mathematical relationships that were
relevant to the calculator graphs and other outputs: it cannot be assumed that ‘new’ relationships are
recognised in the electronic medium and that calculator solution processes are known. Furthermore,
debate and argument on the efficiency of calculator procedures was usually commendable in that it
encouraged optimal use of the technology; and the juxtaposition of conventional syntax and
calculator syntax on the whiteboard potentially assisted equivalence recognition.
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