
When there‘s more than one way to get
there …

Gabriela Lovászová
Constantinus the Philosopher University

Nitra, Slovakia

glovasz@ukf.sk

Jozef Hvorecký
Vysoká škola manažmentu

Bratislava, Slovakia
&

University of Liverpool
Liverpool, UK

hvorecky@cutn.sk

Abstract

Mathematics is not only about learning problem-solving methods – it is also about
gaining a deeper understanding of their purpose, advantages and disadvantages.
Frequently, the same problem can be solved by applying several different methods.
Mathematics education should also include clues to those best fitting to the person’s
aim. To achieve that our students are encouraged to find as many correct solutions to
problems as possible. Then, properties of individual solutions are discussed.

In the paper we exemplify our approach by solving the problem: How many four-
digit numbers not containing 3, 6, and 9 are divisible by 3? The following methods are
shown:

• An estimation giving an approximate result,

• Constructing a finite automaton recognizing the “divisibility by 3” property,

• Forming a formal grammar capable of generating these numbers,

• Writing a computer program producing all the numbers,

• Using dynamic programming to speed up the execution of the program.

Comparing different solutions, the students disclose not only what their solutions
can do and what they can not do; they are also encouraged to generalize their
observations. One of these discussions is also described here.

1 Introduction

Mathematics is more than just a collection of formal problem-solving methods.
Mathematicians and qualified users should understand their power: purpose, advantages
and disadvantages. Teaching mathematics therefore means more than pure training of
calculation techniques and skills – it is also about learning their interrelationships and
in-depth understanding of the concepts.

Discussions are an excellent way of building such an intensive kind of knowledge.
In our classes, they have a form of “conferences” – students solve problems, present
their solutions, compare them with those of classmates and discuss their advantages and
disadvantages. As quoted in [5]: “Conferencing is a medium that can add an extra
dimension to developing ideas and increasing understanding of the course material. It
gives an opportunity to stop and think and refine ideas … and hold on to those ideas for
future reference.”

The discussions naturally presume students’ extensive and intensive knowledge of
various methods, both the elementary and advanced one. That’s why the theme
presented in our paper is taken from the final year of training future teachers of
Mathematics and Information Science at the University of Constantinus the Philosopher
in Nitra, Slovakia. The course is named "Selected Topics in Theoretical Informatics"
and addresses contemporary trends in teaching mathematics and informatics. The
described goal is one of many. Others are structuring knowledge gained during first
years of study, developing teaching skills and capability react in class environment,
evaluation of homework, test preparation and evaluation, application of general
algorithmic methods and apparatus of formal theories to problem solving.

The course runs for 4 years with the approximate total of 50 students.

2 Teaching Strategy
2.1 Problems

A discussion can evolve only when different ideas are proposed at the same time.
In mathematics, such an opportunity appears when a problem can be solved using
various methods. Then, the power of each solution can be demonstrated, discussed and
generalized.

For our purposes, another feature is also important – the discussed problems must
be easy enough for each student to find at least one solution. As we expect all students
to participate in the discussion, proposing a solution is the first step towards their higher
motivation and involvement. Calling for solutions, we encourage the students to look
for „unthinkable“, extraordinary solutions. Our experience shows that surprise solutions
make later discussions vital and vibrant.

In a way, we are not interested in solutions themselves – we expect our students to
demonstrate and discuss what the solutions tell about the problem and themselves.
Therefore, a good argumentation about the selection of the method, its appropriateness,
effectiveness and efficiency is a part of its presentation. The students must be ready to
“defend” their solutions towards others.

In this paper our method is exemplified using the problem How many four-digit
numbers not containing 3, 6, and 9 are divisible by 3? Similar discussion raise around
drawing a dragon curve1, robot orientation in a maze, generating texts with requested
properties, compression and decompression of text strings, creation of fractals and so
on. In average, five themes are analyzed and discussed during the one-term course.
Their shared feature is a simple and understandable formulation with many potential
solutions.

1 In [2] the authors describe one of its non-traditional solutions.

2.2 Class activity
To achieve our aims, the process consists of three steps: the preparation of draft

solutions, their presentation and, finally, their group reviewing. The last two are the core
activities and done inside class in the form of a group discussion. The discussion is
moderated as we try to navigate our students to most important observations and
relationships. Sometimes – depending on the students’ mentality – the presentation and
reviewing become mixed up and run simultaneously. We do not insist on their
separation unless it does not interfere with aims of the discussion.

The detailed process looks as follows:

1. The problem is given to the students as homework approximately one week before
the discussion session. Each student is required to complete at least one solution.

2. The discussion starts with students demonstrating their solutions in the front of their
colleagues and explaining reasons of choosing the method. In the later stages, only
“distinct solutions” are shown. The student has to indicate in which way his/her
solution differs from those presented earlier. This step continues as long as all
essentially different solutions are presented.

3. What the class finally gets is a collection of substantially different solutions. Now
everyone can express his/her opinion, discuss the appropriateness of the method, its
potential improvement, advantages and disadvantages. The remarks pointing to
relationships between different solutions are especially welcome and encouraged.

3 Solutions
3.1 Estimating the result

The numbers cannot contain 3, 6, and 9. Seven digits remain. Four-digit numbers
cannot begin with 0 i.e. there is one of six digits in the first position and one of seven in
all others. Altogether there is 6 x 7 x 7 x 7 numbers not containing “forbidden digits”.
This can be rewritten as 42 x 49. Approximately, it means 40 x 50 i.e. about 2000
candidates. In general, every third number is divisible by 3. Consequently, our
estimation is 667.

3.2 Finite automaton
Figure 1 shows an automaton recognizing whether a number not containing 3, 6,

and 9 is divisible by 3. The circles represent their states; the arrows permitted moves
between them. Every evaluation starts in the initial state q0. The digits are then read one
by one. At every moment, the pair – the input digit & the current state – determines the
following state of automaton. Therefore, the first letter determines the second state of
the automaton:
• If it is any of the digits 1, 4, or 7, its next state is q1.

• If it is 2, 5, or 8, then q2 becomes its next state.

In general, the move from the current state to its successor is specified by the
arrow with the input digit. For example, let the current state be q2:
• When the entered digit is 0, it remains in q2.

• When the input is 1, 4, or 7, the next state of the automaton is qF.

• When it is 2, 5, or 8, the next state is q1.

In fact, the states q1, q2
and qF corresponds to the
remainders of the string read
so far. The automaton is in the
state q1, when the string gives
the remainder 1 after its
division by 3. The state q2
corresponds to the remainder
equal to 2. When the state is
qF, the string is divisible by
three2. The entered number is
divisible by 3, if and only if
its input process ends in qF.
Therefore, qF is referred to as
the final state. When the input
is complete and the automaton
is in its final state, the result
of the divisibility-by-3 test is
“Yes”, otherwise it is “No”.

Figure 1. Finite automaton recognising numbers divisible by 3

3.3 Regular grammar
Automata help us to recognize whether given string(s) have a given property.

Grammars do the opposite – define text strings satisfying a specified property [1]. The
regular grammar with the following derivation rules generates all numbers not
containing 3, 6, and 9 and divisible by 3:

S 1S1 | 4S1 | 7S1 | 2S2 | 5S2 | 8S2

S1 2 | 5 | 8 | 0S1 | 1S2 | 4S2 | 7S2 | 2SF | 5SF | 8SF

S2 1 | 4 | 7 | 0S2 | 1SF | 4SF | 7SF | 2S1 | 5S1 | 8S1

SF 0 | 0SF | 1S1 | 4S1 | 7S1 | 2S2 | 5S2 | 8S2

The symbols used in the rules belong to two distinct sets:

• The digits – 0, 1, 2, 4, 5, 7, and 8 – are terminal symbols. The generated strings will
contain nothing but them.

• All other symbols – S, S1, S2 and SF – are non-terminal symbols. Only non-
terminal symbols can appear to the left of the derivation symbol “ ” and refer each
to other(s) in a recursive way in order to generate sequences of any length.

The derivation symbol indicates that the symbol on its left side can be replaced by
the symbol (or the sequence) on its right side. Here, each line is an abbreviation of a

2 That’s why all arrows marked by 0 preserves the current state.

series of right-side strings separated by “|” e.g. S1 can be replaced either by any of the
numbers 2, 5, and 8 or by the sequences 1S1, 4S1, 7S1 etc. Any non-terminal in the
current string can be replaced by any right-hand-side sequence3. The initial symbol of
the grammar is S so the derivation of every string starts from it. The process terminates
when there is no non-terminal symbol in the string.

There are three examples of correct derivations:

S 5S2 57

S 8S2 87S1 872

S 4S1 45SF 450SF 4507S1 45078

As expected, all three rightmost text strings – the results of the derivations – are
numbers divisible by 3. Naturally, to solve the problem we have to generate all and only
four-digit strings.

3.4 Non-recursive Computer Program
In our below program written in Pascal, the four-digit numbers are formed as

combinations of four elements of the array named Dig. Each of its elements contains
one of the seven approved digits.

To generate all four-digit numbers, four nested loops are needed. The outermost
loop (used for generating the number of thousands) never uses the first element of Dig
containing zero so the generated number is never less than 1000. The innermost loop
combines the selected digits into a newly formed candidate. When it is divisible by 3, a
counter (called Total) is increased by 1. In the end, Total contains the requested number.
const Dig:array[1..7] of integer=(0,1,2,4,5,7,8);
var i, j, k, m, Candidate, Total: integer;
begin
Total := 0;

for i:=2 to 7 do
 for j:=1 to 7 do
 for k:=1 to 7 do
 for m:=1 to 7 do
 begin Candidate:= ((((Dig[i]*10+Dig[j])*10+Dig[k])*10+Dig[m])
 if ((Candidate mod 3) = 0)
 then begin inc(Total); Writeln(Total, Candidate) end;
 end;
writeln(Total);
end.

3 The application of the rules with non-terminals prolongs the string.

The program produces the following sequence of results:

Total Candidate
1 1002
2 1005
3 1008
4 1011
5 1014
6 1017
...

700 8874
701 8877
702 8880

3.5 Recursive Computer Program
Among many recursive Pascal programs, we have selected one similar to the

above finite automaton and regular grammar. It generates the numbers with the required
property and stores their number in a global variable named Total:
var Total: integer = 0;

It contains four recursive procedures corresponding to the states of the automaton
(and the non-terminal symbols of the grammar). The procedure that simulates the initial
state looks as follows:
procedure InitialS(Length:integer; S:string);
var New: integer;
begin
if Length > 1 then

begin
for New = 1 to 7 step 3 do Remainder1(Length-1, S + New);
for New = 2 to 8 step 3 do Remainder2(Length-1, S + New);
end;

end;
The argument named Length specifies the requested number of digits (four in our

case). In each procedure call, it is decreased by 1. The first for loop activates the
Remainder1 procedure. It generates numbers giving the remainder equal to 1 by adding
digits 1, 4, and 7 to the numerical string S4. The second loop applies the same to
Remainder2, by adding 2, 5, and 8.

4 The digits are placed in the elements Dig[2], Dig[4], and Dig[6], respectively.

The next procedure simulates the state S1:
procedure Remainder1(Length: integer; S: string);
var New: integer;
begin
if (Length = 1) then

for New = 2 to 8 step 3 do
begin

Inc(Total);

writeln(Total, S + New);

end;
else

begin
Remainder1(Length-1, S + “0”);

for New = 1 to 7 step 3 do Remainder2(Length-1, S + New);
for New = 2 to 8 step 3 do NoRemainder(Length-1, S + New);
end;

end;
The then branch corresponds to the recursion trivial case. As the remainder is 1, it

generates three numbers divisible by 3 by adding 2, 5, and 8 to the end of the processed
string. The else branch generates seven prolongations of its input string:

• When “0” is added, the remainder remains same, so the procedure calls itself.

• When “1”, “4”, or “7” is added, the remainder becomes 2, so Remainder2 is called.

• After adding “2”, “5”, and “8”, NoRemainder is activated.

The Remainder2 and NoRemainder procedures are based on the same idea as
Remainder1. For space reasons, their detailed formulation is left to the reader.

The execution is activated by the command
InitialS(4; “”);

as our requested number length is 4 and the initial string is always empty. The program
produces the same results in a different order:

Total S

1 1002
2 1005
3 1008
4 1011
5 1014
6 1017
...

700 8784
701 8787
702 8700

3.6 Dynamic Programming
Dynamic programming is a problem-solving method based on stepwise expansion

of the simplest solution into more and more complex ones. For that reason it is
frequently expressed by recursive formulas. Recursive solutions can easily be converted
into spreadsheet calculations [3]. The table in Figure 2 shows calculations used in our
case.

 A B C D
1 Number of digits Remainder 0 Remainder 1 Remainder 2
2 1 0 3 3
3 2 =B2+3*C2+3*D2 =3*B2+C2+3*D2 =3*B2+3*C2+D2
4 3 =B3+3*C3+3*D3 =3*B3+C3+3*D3 =3*B3+3*C3+D3
5 4 =B4+3*C4+3*D4 =3*B4+C4+3*D4 =3*B4+3*C4+D4

Figure 2 Formulas used in calculations

The first row of the calculation corresponds to the trivial case – to the one-digit
numbers. As zero is as not assumed to be divisible by 3 here, the value in the
corresponding field is 0. There are three numbers giving the remainder equal to 1 as
well three giving 2. The formulas calculating the values for longer digits are all of the
form

= X + 3*Y + 3*Z

where X, Y, Z are cells of the previous row. For easier understanding that can be
rewritten as

= 1*X + 3*Y + 3*Z

The field specified as X always refers to the first above field in the same column. It is
multiplied by 1, because the sole way of prolonging the numerical string and protect the
remainder value is to add 0. Y and Z refer to the remaining two fields in the previous
row. Their factor (3) represents three digits that can be added to the shorter strings to
produce the new remainder. Figure 3 shows the results of the calculations.

 A B C D
1 Number of digits Remainder 0 Remainder 1 Remainder 2
2 1 0 3 3
3 2 18 12 12
4 3 90 102 102
5 4 702 678 678

Figure 3 Results of the calculations

So, we can conclude that there are 702 four-digit numbers divisible by 3.

4 Discussion

Students’ discussions concentrate on the accuracy of the results obtained using the
methods, the complexity of their evaluation, and other important features. Students are
asked for a full description of each solution and its comparison with his/her other
solutions as well as with solutions of their classmates. What follows are some of these
observations.

The estimation offers the fastest evaluation. Its disadvantage is its low accuracy.
Still, it is an excellent tool for our initial orientation. For example, in the above case the
difference is less than 5%. So, when a computer program or a spreadsheet calculation is
completed, the estimation is exploited as a yardstick. Significant differences between
them are good error indicators.

The finite automaton recognizes whether a number is divisible by 3 or not. One
can formally prove that the automaton really performs that – the proof has been
informally described above. Unfortunately, the evaluation can be done for one number
at time only. To answer our basic question we have test all four-digit numbers manually.
Theoretically, it is an excellent solution. Practically, it is a very exhausting one.

One can also prove that the regular grammar generates the correct strings and
nothing but them. Again, because we generate a string at time, we have to make many
derivations carefully checking whether all strings have been produced, whether no
string was generated twice etc. Evidently, it is another impractical method.

The computer programs produce their results quickly. On the other hand, they
cannot be implemented without a computer, a programming language – and without a
qualified programmer. So, their preparation period can be rather long. Comparing our
above programs we see that the non-recursive solution is much easier to complete. On
the other hand, because the idea of the recursive program is based on the grammar, it is
much simpler to verify that it only generates the specified strings and nothing else.
Consequently, it is more elegant. In addition, the recursive program can generate
numbers of any length specified by the input, whilst the code of the non-recursive
program has to be rewritten to fit the particular length.

The spreadsheet calculation shows the simplest computerized solution to our
original question. Compared to other (rather descriptive) ones, this solution looks like a
puzzle. It does not generate the numerical strings divisible by 3, it only counts them5.
Would you guess what it performs, how and why, just looking at Figure 2 and 3? On the
other hand, based on our experience with the grammar and the recursive program, the
conclusions are much simpler. This also exemplifies why forming a simple and fast
solution frequently requires forming less efficient ones first.

5 To produce the specified numerical strings one has to use an expanding spreadsheet calculation [4].

As a part of discussion, we encourage students to group all presented solutions to
“families” – sets of solutions based on the same idea. Two families are presented here:

• The regular grammar, recursive program and the spreadsheet calculation belong to
the same family. All are different expressions of the systematic construction of all
and only numerical strings divisible by 3.

• The finite automaton and the non-recursive program are based on a different idea:
Take all four-digit numbers. Test their divisibility by 3 and count those passing the
test.

5 Conclusions

The methodology allows us to present both complexity of mathematics and
interdependence of its elements to students. It allows them to understand that theory-
based solutions (finite automata, formal grammars) are excellent to prove the
correctness of their ideas, but their direct use is often impractical. On the other hand,
they can also see why the use of computer programs and spreadsheet calculations in
their isolation from theory is risky. As each calculation is the expression of an idea, the
ideas should be based on theoretical reasoning. A proper combination of theory and
practice simplifies guaranteeing their correctness.

We see the ability of the discussions to demonstrate strong relationships between
mathematical theories and programming practice as the biggest benefit. Also, this active
approach to their learning is welcome by the students. Even if we have not made any
formal evaluation of the method, their positive attitude to this section of the course and
an evident progress in their comprehension of the basic relationships between
mathematics and informatics is very encouraging. A student made us happy saying: I
would never guess that mathematics can be an adventure.

References

1. Hopcroft, J. E. – Ullman, J. D.: Formal Languages and their Relation to
Automata. Addison-Wesley, Reading, MA, 1969

2. Hvorecký, J. – Lovászová, G.: Spreadsheets and Languages. In Wei-Chi Yang,
Sung-Chi Chu, Zaven Karian, Gary Fitz-Gerald (Editors): Proceedings of the Sixth
Asian Technology Conference in Mathematics. : ATCM 2001, Melbourne. pp.371-
379

3. Hvorecký, J. – Trenčanský, I: Recursive Computations in Spreadsheets. In Wei-
Chi Yang, Kizoshi Shrirayanagi, Sung-Chi Chu, Gary Fitz-Gerald (editors):
Proceedings of the Third Asian Technology Conference in Mathematics. Springer,
Tokyo, 1998, pp. 290–299

4. Hvorecký, J. – Trenčanský, I: Expanding Spreadsheet Calculations. In Wei-Chi
Yang, Sung-Chi Chu, Jen-Chung Chuan (editors): Proceedings of the Fifth Asian
Technology Conference in Mathematics. ATCM 2000, Chiang Mai, pp. 420–429

5. Salmon, G.: E-Moderating: The Key to Teaching and Learning Online. Kogan-
Page, London, 2000

