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Abstract 
This article describes the use of various technologies in a mathematical modeling course 
designed for preservice mathematics teachers.  Two detailed examples are given to 
show how the students enrolled in this course use the Internet, graphing and curve 
fitting software, and spreadsheets to collect, represent and analyze data, and to build 
mathematical models.  Other technologies such as statistics software, dynamic geometry 
software, graphing calculators, and Calculator-based Laboratory (CBL) are also used to 
stimulate the students’ mathematical modeling and reasoning insights and their learning 
interest.  The technology tools enable the future teachers to appreciate the power of 
mathematics that helps them understand the world. 
 

Introduction 
 National conferences and committees have increasingly advocated an emphasis on 
problem solving and mathematical modeling.  In its New Goals for Mathematical Sciences 
Education (1983), the Conference Board of the Mathematical Sciences advised that the 
changing nature of mathematics required teachers to continually upgrade their knowledge and 
skills through advanced study and suggested mathematical modeling as an area of study.  In 
1989, the National Research Council issued its Everybody Counts: A Report to the Nation on 
the Future of Mathematics Education, which warned an urgent need for teaching reforms that 
include an emphasis on model building.  In 1989, the National Council of Teachers of 
Mathematics (NCTM) formulated a specific plan of action, Curriculum and Evaluation 
Standards for School Mathematics, stressing the importance of mathematical modeling as a 
facet of problem solving.  More recently, the NCTM and the Mathematical Association of 
America (MAA) published a series of activity or text books on mathematical modeling, such as 
Mathematical Modeling in the Secondary School Curriculum (Swetz & Hartzler, 1994) and 
Mathematical Modeling in the Environment (MAA, 1998).  Despite these repeated 
recommendations and exhortations, however, little effort has been expended in preparing 
secondary school teachers to use mathematical modeling techniques and situations effectively 
in their classrooms (Swetz & Hartzler, 1994).  For many years, the mathematics community 
placed its highest value, at least implicitly, on “pure mathematics,” and it continued to educate 
the bulk of both undergraduate and graduate students with scant attention to mathematical 
modeling of real world problems (Hadlock, 1998).  It is time to change this questionable 
situation in the mathematics preparation of our preservice teachers.   
 To provide the preservice teachers with quality mathematics education, we (other 
mathematics educators and I) have focused on curriculum changes at Florida International 
University.  One of the important changes is designing and implementing a new, standards-
based, mathematical modeling course for secondary school mathematics preservice teachers.  
The purpose of this course is to provide future teachers with the knowledge and experience that 
enable, motivate, and encourage them to solve real-world problems through mathematical 
modeling.  The course can help the prospective teachers construct their content knowledge 
from a perspective that involves rich connections among mathematics, science, and real-world 



situations.  It features innovations derived from the national mathematics education standards.  
It has been and will continue to be offered at the junior level, and is team-taught by a group of 
faculty using exemplary teaching strategies. 
 
Technology Integration 

Advanced technology is increasingly pervasive in everyday life.  More and more 
educators believe that the use of technology can effectively facilitate the teaching and learning 
of mathematics.  This belief has been reinforced since the coming out of the innovative 
technologies in mathematics education including dynamic geometry software such as the 
Geometer’s Sketchpad (Jackiw, 1995), computer algebra software such as Mathematica and 
Maple, new spreadsheet programs such as Microsoft Excel, graphing calculators such as TI-83 
and TI-92, and a variety of other powerful electronic tools.  These technologies are highly 
interactive so that whenever a student’s actions yield a reaction on the part of the machine, it in 
turn sets the stage for interpretation, reflection, and further action on the part of the student.  
With these technologies, one can make powerful resources immediately available to aid 
thinking or problem solving, provide intelligent feedback or context-sensitive advice, actively 
link representation systems, and generally influence students’ mathematical experience more 
deeply than ever before (Kaput and Thompson, 1994).  In addition, the rapid computing speed 
of computers and graphing calculators can free students from tedious calculations and allow 
them to concentrate on conceptual understanding.  By opening a new, colorful world to the 
students, technology can greatly motivate the students, stimulating their stronger interest in 
mathematics.  Based on these considerations, the NCTM Standards (1989) emphasize the 
effective use of technology as one of the chief features of the reform curriculum.  In recent 
years, many research studies (Choi-koh, 1999: Dixon, 1997; Jiang, 1993; O'Callaghan, 1998; 
Thompson, 1992) have provided evidence supporting the belief that students could be 
benefited by the use of technology.  
 Technology is a natural tool for mathematical modeling.  It would be less than optimal 
and sometimes difficult for us to teach and for students to explore mathematical modeling 
without using technology.  Therefore, the use of technology is emphasized in this course.  
Calculator-based Laboratory (CBL) with multiple sets of probe-ware is used for data collection.  
Computer software (such as Mathematica and statistics software) and graphing calculators are 
used for data analyses and curve fitting activities.  Other computer applications such as the 
Geometer’s Sketchpad and Microsoft Excel spreadsheet are also used to stimulate the future 
teachers’ mathematical modeling and reasoning insights and their learning interest.  These 
technology tools enable the future teachers to appreciate the power of mathematics that helps 
them understand the world.  Using the graphical and numerical representations together, the 
future teachers can interpret situations both visually and numerically.  This helps them 
formulate and refine problems (if the problems do not arrive neatly packaged), investigate 
problems from multiple perspectives to gain further insights, and articulate problems clearly 
enough to build mathematical models.  When they experience difficulties in the problem 
posing and solving processes, constructed computer situations can help them develop ideas and 
strategies to approach solutions.  These computer situations are usually difficult for the future 
teaches who lack sound understandings of the problems to construct by themselves in the first 
place.   

In the following sections, examples will be given to show how we, as well as our 
students, used technology in the modeling class taught in the Fall 2001 semester. 

 



The Use of Graphing and Curve Fitting Software  
Some basic mathematical structures that lend themselves to modeling are graphs, 

equations (formulas) or systems of equations or inequalities, digraphs, index numbers, 
numerical tables, and algorithms (Swetz & Hartzler, 1994).  Functions/equations and their 
graphs turn out to be the mathematical structures most frequently used for modeling.  To that 
end, the graphing and curve fitting software becomes very important or even indispensable in 
mathematical modeing.  A good example of this aspect is a modeling task assigned to the 
students enrolled in the modeing class.  The task was to build a mathematical model for the 
world population growth based on the data from the web site 
www.census.gov/ipc/www/worldhis.html, which gives historic estimates of world population from 
10000 B.C. to 2000 A.D.  To make better sense of the population growth, the students used 
Physics Analysis Workstation (PAW), an interactive graphing and curve fitting system 
(http://paw.web.cern.ch/paw/), to construct the graphic representations of the data.   

 

 
Figure 1. Population growth from 10000 B.C to 2000 A.D. 

 
In the graph displayed in Figure 1, the blue section shows the world population from 

10000 B.C to 1 A.D., the green section shows the population from 1 A.D. to 1950 A.D., and 
the red part shows the population from 1950 A.D. to 2000 A.D.  From the graph, the students 
clearly visualized that the population of the world had changed slowly until around 1800 A.D., 
and it rapidly grew during the last 50 years. 

 

http://www.census.gov/ipc/www/worldhis.html
http://paw.web.cern.ch/paw/


 
Figure 2. Population growth during the period from 1 to 2000 A.D. and the 20th century 

 
In the two graphs displayed in Figure 2, the students could visualize the population 

change during the period from 1 A.D. to 2000 A.D. and that during the twentieth century. 
Analysis of data usually involves fitting the measured data to a model in order to make 

some predictions about the system under investigation.  The students decided to use an 
exponential function and a quadratic function to model the data.  In PAW the fitting algorithm 
solves the related equations to determine the best-fit parameters for the chosen functions based 
on some data and a linear model.  With the help of PAW, the students got to know that for the 
exponential function exp(p1+ p2t), the best-fit parameters were p1 = -29.263  and  p2 = 
0.1902E-1; and for the quadratic function p0 + p1t + p2t2, the best-fit parameters were p0 = 
0.14449E+7, p1=-1537.2, and  p2=0.40893.  The related graph is shown below: 
 



 
Figure 3. Curve fitting and extrapolation 

 
With the exponential and quadratic functions mentioned above, the students were able 

to predict the population of the world in the years 2010, 2020, 2030 and 2050.  Using the 
Mathematica software for numerical calculations, the students’ predictions are listed in the 
ollowing table: f 

 Year 2010 Year 2020 Year 2030 Year 2050 
Calculated 
with the 
exponential 
function. 

t=2010 
Pe = 7841.61*106  
Population: around 
7.84 billion 

t=2020 
Pe = 9484.37*106  
Population: around 
9.48 billion 

t=2030 
Pe = 11471.3*106  
Population: around 
11.47 billion 

t=2050 
Pe = 16781*106  
Population: around 
16.78 billion 

Calculated 
with the 
quadratic 
unction. 

 
Pq = 7246.09* 106 

Population: around 
7.25 billion 

 
Pq = 8353.97* 106 

Population: around 
8.35 billion 

 
Pq = 9543.64* 106 

Population: around 
9.54 billion 

 
Pq = 12168.3* 106 

Population: around 
12.17 billion f 

From these calculations and also from the graph shown in Figure 3, the students 
realized that during the period 1950-2000 these two functions give close results, but as the 
value of t increases, the difference between Pe and Pq grows.  Thus they understood that when 
making predictions, one must be careful.  To them, it seemed to be a good idea to predict the 
number of people living on earth within the range of Pe and Pq values.  
 



The Use of Spreadsheets 
In the modeling class, every student was required to complete projects, including a term 

project.  Below is one of the term projects that our students completed in the class.  In this 
project, the Microsoft Excel spreadsheet program was used to both present and implement the 
modeling ideas. 
Earthquake Modeling Project 

Description:  High-rise buildings are susceptible to displacements during 
earthquakes.  It is normal for the last floor of a thirty-storied building to sway as much 
as 30 cm (11.8 in) during peak earthquake accelerations.  Although buildings have 
multiple degrees of freedom, we will focus on a model with only one degree of freedom, 
which will represent the lateral sway of the last floor.  The structure of the building acts 
as an enormous spring whose magnitude depends on the construction material.  For 
simplification purposes, we have modeled the earthquake forces, Q as a sinusoidal 
time-dependent function: Q(t) = Q1*sin(W*t) 

Driving Question: How is the behavior of a building under the effects of an 
earthquake modeled? 

 

 
Figure 4. An Application of phisical formula F = ku. 

 
Theory: High school students are usually exposed to problems, which deal with 

the following basic notions of force: F = ma, F = cv, and F = ku, where m = mass of 
building, a = acceleration, c = coefficient of damping, v = velocity, k = stiffness of 
building, and u = displacement.  F= ku is illustrated in Figure 4. 

A more complex problem that includes the three effects can be solved through the use 
of differential equations: 



Q(t) = ma + cv + ku, or 
Q(t) = mu'' + cu' + ku. 

For the case of an undamped system, the equation simplifies to:  
Q(t) = mu'' + ku. 

Numerical Method:  In order to adapt this type of problem to the high school 
level, numerical methods provide an appropriate solution, using three components of 
displacement, u: 

u = u1 +u2 + u3, where 
(u1)j+1 = uj cos(w*dtj ) + (vj /w) sin(w*dtj) 
(u2)j+1 = (Qj /k) (1 - cos(w*dtj )), where Qj  = Q(tj) 
(u3)j+1 = (dQj /(kw*dtj)) (w*dtj - sin(w*dtj )). 

(The variables involved are: w = natural frequency of building, T = period of 
vibration, dtj = tj+1 -  tj, time interval (fraction of T), Q1 = force coefficient, dQj = Qj+1 - 
Qj , time-varying force, and vj = velocity at j.)  The numerical method can be 
implemented very well using a spreadsheet (see the figure on the left below).  The graph 
on the right below shows the positions of an object at the top of the building at different 
times.  If one rotates the graph 90˚ counterclockwise, he can see that as represented by 
the graph, the top of the building is moving sideways. 

 

 

 
 

 
 

Figure 5. Numerical and graphical repreeentations used for modeling.  
Questions: The variables used in cells C14, C15, and C16 in the spreadsheet are 

variables T, Q1, and k.  The original input is (20, 1, 1).  Change the spring constant to 
10, simulating a ten-times stiffer building (20, 1, 10).   

By how much does the displacement increase or decrease?  (Answer: decreases by 10). 
Change (20, 1,1) to (80,1,1).  Notice the amplification.  What is the interpretation of 

results such as displacements of 1000 cm?  (Answer: the building collapses). 
What design consideration should be taken when designing a building, which will be 

occupied by senior citizens?  (Answer: the building should be stiffer). 
What is an invariant in this model?  (Answer: the mass of the building.  However, by 

the relation w = sqrt(k/m), one can simulate different masses). 
 

Conclusion 
In this paper, I only used two examples to show the ways of using technology in our 

mathematical modeling course for the preservice secondary mathematics teachers.  As a matter 



of fact, there are numerous possibilities for students to use a variety of technologies to enhance 
their mathematical modeling capabilities.  To show the benefits of using technology in 
mathematical modeling, course assessment is very important.  In addition to traditional 
assessment techniques such as quizzes, exams, library research reports, and activity write-ups, 
alternative assessments based upon many alternative learning strategies should be used to 
measure what the student has actually learned, and obtain information for improving course 
design and/or instruction.  Among these alternative approaches are artifacts from the open 
inquiry projects, observations on how individual students approach problem solving and 
mathematical modeling without help, and interviews with individual students to assess aspects 
of their learning experience that cannot be revealed effectively or efficiently through other 
methods. 
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