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Abstract:  In this paper we will show how to use a computer algebra system (CAS) to study various aspects of the 
center of gravity of plane regions.  The study includes trapezoidal, parabolic, and exponential regions.  We first consider 
such regions with fixed boundaries.  In order to calculate their center of gravity, one needs to calculate certain integrals, 
which could be tedious.  A CAS such as Mathematica is a useful tool for such calculations.  Next we will consider such 
regions with variable boundaries.  These boundaries change with a certain parameter.  As the parameter changes, the 
center of the gravity of the region changes, and Mathematica can be used to study the locus of the center of gravity.  We 
will also show how to use Mathematica to make animations of the center of gravity as the parameter changes.  Some 
theorems on the center of gravity of these regions will be obtained.  The final section is devoted to the ruler and 
compass constructions of the center of gravity of some of those regions.  
 
1.  Introduction 
     Consider a closed plane region R  in the XY-plane.  Recall that the center of gravity ),( yxG  of 
the region R  is given by (see [10], [11], [12], and [13])  
 
 IIx x /=  (1.1) 

 IIy y /=  (1.2) 
 
where the integrals ,, yx II and I are defined by the double integrals 
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One can now consider the following special case:  Suppose a and b are real constants such that 

ba < .  Suppose that f and g are continuous functions on the closed interval ],[ ba  such that 
)()( xgxf ≥  for all x in ],[ ba .  Let R  be the region bounded by the graphs of     



,),(),( axxgyxfy === and bx = .  Then the equations (1.1)-(1.5) imply that the center of 
gravity ),( yxG  of the region is given by the following equations:  
 

 

∫

∫

−

−
= b

a

b

a

dxxgxf

dxxgxfx
x

))()((

))()((
  (1.6) 

and   

∫

∫

−

−+
= b

a

b

a

dxxgxf

dxxgxfxgxf
y

))()((

))()(())()()(2/1(
  (1.7) 

 
It is useful to realize that the denominator of the above equations (1.6) and (1.7) represents the area 
of the region R .  In the next few sections, we will use the equations (1.6) and (1.7) to calculate the 
center of gravity of several types of regions.  Out first region has the shape of a trapezoid. 
 
2.  The Center of Gravity of a Trapezoidal Region 
      Suppose that a and b are real constants such that ba < , and  f is the linear function defined by 

qpxxf +=)(  for x in ],[ ba  where p and q are constants. Let us assume that 0>q , and  p is such 
that the graph of  f  intersects the vertical lines ax =  and bx =  on the upper-half plane.  Let R  be 
the trapezoidal region bounded by the graphs of )(xfy = , ,, bxax ==  and the x-axis.  See the 
following figure: 
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Figure 2.1  The Center of Gravity of a Trapezoid 
 
One can use the equations (1.6) and (1.7) with 0)( =xg  to calculate the center of gravity ),( yxG  of 
the region R .  For example, the denominators of the equation (1.6) and (1.7) can be calculated as  
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The numerator of equation (1.6) reads as 
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However, calculating the numerator of the equation (1.7) is a bit more tedious: 
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After some simplification, the above three equations together with the equations (1.6) and (1.7) 
imply that the center of gravity ),( yxG  of the region R  is given by 
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One can use a CAS such as Mathematica to facilitate the above calculations.  For example, the 
“Integrate” command of Mathematica can be used to calculate the integrals involved in formulas 
(1.6) and (1.7) (see [9] and [15]).  The following Mathematica program automates the task of 
finding the center of gravity of our trapezoidal region R : 
 
Program 2.1 
f[x_]:=p*x+q 
g[x_]:=0 
ix=Integrate[x*(f[x]-g[x]),{x,a,b}]; 
iy=Integrate[(1/2)(f[x]+g[x])(f[x]-g[x]),{x,a,b}]; 
i=Integrate[f[x]-g[x],{x,a,b}]; 
{xbar,ybar}=Simplify[{ix/i,iy/i}] 
 
Press “Shift-Enter” to execute the program.  As the output we get the following coordinates of the 
center of gravity: 
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One can readily see that the above output agrees with equations (2.1) and (2.2) giving the 
coordinates of the center of gravity G.  The program 2.1 can be used to experiment with other types 
of regions as we shall soon see.  In fact, Mathematica can be used more than just a tool for 
computation in our studies of center of gravity (see section 4 of this paper). 



Mathematica is a general purpose CAS.  It can be used as a tool for numeric or symbolic 
computation, a tool for two or three-dimensional graphing, a visualization device, a programming 
language, or even as a multimedia studio combining sounds and graphics.  Some general references 
on Mathematica are [1], [9], [14], and [15].  For the usage of Mathematica as a visualization tool 
refer to [3], [4], [6], and [7].  For the usage of Mathematica as a pattern recognition and conjecture-
forming tool, refer to [2], [3], [5], and [8].  
 
In the next section, we will study the center of gravity of parabolic and exponential regions. 
 
3.  The Center of Gravity of Parabolic Regions and Exponential Regions 
 
 (a)  Parabolic Regions 
    Suppose that a, b, p, and q are real constants with 0>a and qb < .  Let S  be region bounded by 
the graphs of qpxxf +=)(  and baxxg += 2)( .  Let ),( yxG  denote the center of gravity of the 
region S .  See the figure below. 

X

Y

H0,qL y=px+q

G y=ax2+b

 
 

Figure 3.1  The Center of Gravity of a Parabolic Region 
 
Let c and d  be the x-coordinates of the points of intersection of the two graphs )(xfy =  
and )(xgy = with dc < .  Then the equations (1.6) and (1.7) imply that  
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The integrals in equations (3.1) and (3.2) are a lot harder to compute by hand compared to the 
corresponding calculations in the previous section.  Mathematica will greatly facilitate our 



computations.  For example, to find the limits of integration c and d, we can use the “Solve” 
command of Mathematica (see [9] and [15]).  The following program calculating the center of 
gravity of the parabolic region S  was written by modifying the program 2.1 in the previous section. 
 
Program 3.1 
f[x_]:=p*x+q; 
g[x_]:=a*x^2+b; 
{c,d}=x/.Simplify[Solve[f[x]==g[x],x] ]; 
ix=Integrate[x*(f[x]-g[x]),{x,c,d}]; 
iy=Integrate[(1/2)(f[x]+g[x])(f[x]-g[x]),{x,c,d}]; 
i=Integrate[f[x]-g[x],{x,c,d}]; 
{xbar,ybar}=Simplify[{ix/i,iy/i}] 
 
According to the output of the program, the center of gravity G of the parabolic region S  is given 
by 
 )2/( apx =  (3.3) 
 )5/()322( 2 aaqpaby ++=  (3.4) 
 
(b)  Exponential Regions 
        Let a and b be real constants such that ba < .  Consider the exponential function 

qpexf kx +=)(  where p, q, and k are real constants with 0, >qp .  Let T be the region bounded 
by the graphs of ,,),( bxaxxfy === and the x-axis.  As usual, let ),( yxG  denote the center of 
gravity of the exponential region T .  See the following figure: 
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Figure 3.2  The Center of  Gravity of an Exponential Region 
 
Like before, one can write the following Mathematica program to calculate the center of gravity of 
the region T : 
 
Program 3.2 
 f[x_]:=p*Exp[k*x]+q 
g[x_]:=0 
ix=Integrate[x*(f[x]-g[x]),{x,a,b}]; 



iy=Integrate[(1/2)(f[x]+g[x])(f[x]-g[x]),{x,a,b}]; 
i=Integrate[f[x]-g[x],{x,a,b}]; 
{xbar,ybar}=Simplify[{ix/i,iy/i}] 
 
According to the output of the program, the center of gravity G of the exponential region T  is 
given by 
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The next section adds an interesting twist to the center of gravity problems we have so far 
presented.  Consider any of the trapezoidal, parabolic, or exponential regions described previously.  
What will happen to the center of gravity if we allow one of the boundaries of the region to change 
gradually?  In this way, we can study the movement of the center of gravity in the XY-plane.  Thus 
we have an entire collection of locus problems at our disposal. 
 
4.  The Locus of the Center of Gravity of Variable Plane Regions 
 
(a)  Variable Trapezoidal Regions 
     Let us again consider the trapezoidal region R  discussed in section 2 of the paper.  The four 
boundaries of this region were ,0,, === ybxax and qpxy += .  Suppose now we fix the 
constants a, b, q, and allow the slope p of the top boundary to vary.  As a result, the top boundary of 
the region will tilt around its fixed y-intercept ).,0( q   Therefore, the region R  changes, and we are 
interested in studying the locus (path) of its center of gravity ),( yxG in the XY-plane.  
 
In order to find the equation of the locus of G, one must eliminate the parameter p between the 
equations (2.1) and (2.2).  For example, the following “Eliminate” command of Mathematica will 
perform the required task (see [9] and [15]): 
 
Input: 
               Eliminate[{x, y} == {(2a^2*p + 2a*b*p + 2b^2*p + 3a*q + 3b*q)/ (3a*p + 3b*p + 6q),  
                       (a^2*p^2 + a*b*p^2 + b^2*p^2 + 3a*p*q + 3b*p*q + 3q^2)/ (3a*p + 3b*p + 6q)}, p] 
 
Output: ybabyyaqbabqqabyaybqaqxqx 22222 222)3333(3 +++−−−==++−−+  
                             
Use the “Solve” command of Mathematica to solve the above equation for y: 
 
Input: 
                 Solve[3q*x^2 + x (- 3a*q - 3b*q + 3a*y + 3b*y) = = -a^2*q - a*b*q -b^2*q  
                                                    + 2a^2*y + 2a*b*y + 2b^2*y, y] 
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The output means that the locus of the center of the gravity of the variable trapezoidal region R  is 
given by 
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The above equation represents a rational function in x.  As a special case, if 0=+ ba , the above 
rational function reduces to the following quadratic function: 
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The above equation (4.2) means that if 0=+ ba , the locus of the center of gravity of the 
corresponding trapezoidal region is a parabola opening up with  y-intercept 2/q .   We can 
summarize our findings in the following theorem. 
 
Theorem 4.1  Suppose that a and b are fixed real constants such that ba < , and let  f  be the linear 
function defined by qpxxf +=)(  for x in ],[ ba  where p is a real parameter and q is a fixed real 
constant. Let us assume that 0>q , and p is such that the graph of f intersects the vertical lines 

ax =  and bx =  on the upper-half plane.  Let R  be the trapezoidal region bounded by the graphs 
of )(xfy = , ,, bxax == and the x-axis.  Then for changing p, the equation of the locus of the 
center of gravity of the region R  is a rational function given by equation (4.1).  For the special case 

0=+ ba , this locus reduces to a parabola given by equation (4.2). 
 
Proof.  Can be proved independent of Mathematica calculations.        
 
So far in this paper, we used Mathematica as a computational tool.  One can also use Mathematica 
to visualize the movement of the center of gravity for changing parameter p.  For example, the 
following program creates an animation of the center of gravity of the variable region R . 
 
Program 4.1 
Clear[a,b,p,q] 
f[x_]:=p*x+q 
g[x_]:=0 
i1=Integrate[x(f[x]-g[x]),{x,a,b}]; 
i2=Integrate[(1/2)(f[x]-g[x])(f[x]+g[x]),{x,a,b}]; 
i=Integrate[f[x]-g[x],{x,a,b}]; 
{xbar,ybar}=Simplify[{i1/i,i2/i}]; 
expr=y/.Solve[Eliminate[{x,y}=={xbar,ybar},p],y][[1]] 



a=-1; 
b=2; 
q=2; 
Do[Plot[{f[x],expr},{x,a,b},PlotRange->{0,5.5}, 
                 PlotStyle->{{Thickness[1/80],RGBColor[1,0,0]},{RGBColor[0,1,0]}}, 
                 Prolog->{ {RGBColor[1,0.6,0],Polygon[{{a,0},{a,f[a]},{b,f[b]},{b,0}}]}, 
                        {RGBColor[0,0,1],Thickness[1/100],Line[{{a,0},{a,f[a]}}]}, 
                        {RGBColor[0,0,1],Thickness[1/100],Line[{{b,0},{b,f[b]}}]}, 
                        {RGBColor[0,0,1],Thickness[1/100],Line[{{a,0},{b,0}}]}, 
                        {RGBColor[1,0,0],PointSize[1/60],Point[{xbar,ybar}]} }], 
                                                  {p,-0.8,1.5,0.05}] 
 
The above program achieves more than one task: First of all it calculates the coordinates of the 
center of gravity G.  Then by eliminating the parameter p between two equations, it calculates the 
equation of the locus of G.  Then for given specific values of a, b, and q,  the program creates an 
animation of the point G.  When the animation is run, one can notice that the upper boundary of the 
trapezoidal region is tilting around its fixed y-intercept.  As the region is changing, observe that the 
point G (red dot) moves along its locus, indicated as a green curve.  A few frames of the animation 
are given below:                  
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Figure 4.1  An Animation of the Center of Gravity of a Trapezoidal Region 
 
(b)  Variable Parabolic Regions 
       Let us reconsider the parabolic region S  described in section 3(a).  Suppose now that we keep 
the constants a, b, q  fixed, but change the slope p of the upper boundary.  Then the center of gravity 
of the region S  changes, and we want to study its locus.  The equation of the locus can be found by 
eliminating  p between the equations (3.3) and (3.4).  Our findings are summarized below: 
 
Theorem 4.2  Suppose that a, b, and q are fixed real constants with 0>a , qb < , and let p be real 
parameter. Let S  be region bounded by the graphs of qpxxf +=)(  and baxxg += 2)( .  Then the 
locus of the center of gravity ),( yxG  of the region S  is another parabola given by the equation 
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Proof.  Details are left to the reader. 



One can make an animation of the center of gravity of the parabolic region S  by modifying 
program 4.1.  One can also discuss variable exponential regions and their centers of gravity by 
extending section 3(b) of the paper.  However, due to the space limitations of the paper we will 
suppress the details. 
 
5.  Ruler and Compass Constructions of the Center of Gravity of Fixed Plane 
Regions  
  
     In the final section of the paper, we will consider how to construct the center of gravity of some 
of the regions discussed in sections 2 and 3.  First consider the trapezoidal region R  discussed in 
section 2.  The validity of following geometric construction of the center of gravity G of the region 
R  can be verified by using the formulas (2.1) and (2.2).  The motivation came from dividing the 
trapezoid into a rectangle and a triangle. 
 
Construction 5.1  Consider the trapezoid ABCD as given in figure 5.1.  Draw the line DE parallel 
to AB meeting BC at E.  Let F be the midpoint of the line segment CE, and H be the midpoint of the 
line segment DE.  Let I be the point of intersection of the medians CH and DF of the triangle CDE.  
Let J be the point of intersection of the diagonals AE and BD of the rectangle ABED.  Then the 
center of gravity of the trapezoid ABCD is the point G on the line segment IJ such that 

.:: EFBEGJIG =   Therefore, to divide the line segment IJ into the ratio EFBE : , proceed as 
follows:  Through B, draw an arbitrary line l , and on this line pick a point K such that BK=IJ.  
Then draw a line through E parallel to FK meeting l  at G′ .  Finally, find the point G on IJ such 
that GBIG ′= .  Then G is the center of gravity of the trapezoid ABCD.   
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Figure 5.1  The Construction of the Center of Gravity of the Trapezoid ABCD 
 
It is a more interesting problem to construct the center of gravity of the parabolic region S  defined 
in section 3.  Due to space limitations we are unable to include the details here.  
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