

Quaternions: From Classical Mechanics to Computer
Graphics, and Beyond

R. Mukundan

Department of Computer Science
University of Canterbury

Christchurch, New Zealand.

mukund@cosc.canterbury.ac.nz

Abstract:

The theory of quaternions was introduced in the mid nineteenth century, and it found many
applications in classical mechanics, quantum mechanics, and the theory of relativity. Quaternions
were also later used in aerospace applications and flight simulators, particularly when inertial
attitude referencing and related control schemes where employed. However, it is only in the recent
past that graphics and game programmers discovered the true potential of quaternions and started
using it as a powerful tool for describing rotations about an arbitrary axis. From computer graphics,
the application domain of quaternions soon expanded into other fields such as visualization, fractals
and virtual reality.

This paper provides an overview of the various analytical properties of quaternions and their
usefulness in the areas of computer/robot vision, computer graphics and animation. Particular
emphasis is given to vision algorithms for 3D pose estimation, animation techniques involving
viewpoint/object rotations, motion interpolation algorithms, and quaternion fractals. The benefit of
using quaternions over other representations such as Euler angles is not just limited to singularity
free kinematics relations – Quaternions allow us to derive closed form solutions for algebraic
systems involving unknown rotational parameters. Some of the neat mathematical characteristics of
quaternions in the complex space together with a set of useful formulae are included for the benefit
of the mathematically inclined.

1 Introduction

The discovery of quaternions is attributed to the Irish mathematician William Rowan Hamilton
(1805-1865) whose persistent struggle to extend the notion of complex numbers represented as
algebraic pairs to triplets, finally gave birth to a very interesting non-commutative algebra[1,2].
Mathematicians hailed the discovery as one of the three highly significant developments in the
nineteenth century, the other two being the developments of the non-Euclidean geometry and the
theoretical foundation for calculus. Even though quaternions remained a “solution in search of a
problem” for many years after their discovery, applications in the fields of classical mechanics and
the theory of relativity were identified in the early twentieth century. The capability of quaternions

to succinctly represent three-dimensional rotations about an arbitrary axis motivated researchers to
employ quaternion algebra in rotational kinematics equations. As a result, several new application
areas involving quaternion based algorithms emerged [3]. These include diverse fields such as
robotics, orbital mechanics, aerospace technologies, and inertial navigation systems.

The motivation for this paper is derived from the recent developments in the fields of computer
graphics and games programming where quaternions have been very effectively used. Graphics
programmers have now realized the potential of quaternions as a very general and powerful rotation
operator. Recent graphics APIs provide functions for quaternion operations. For example, the Java-
3D API has classes (javax.vecmath.Quat4d) for creating quaternion objects, Povray (Persistence of
Vision Ray Tracer) supports quaternions, Quickdraw 3D provides routines for quaternion
operations, and Mathematica has an add-on package “Algebra `Quaternions`”. Quaternions are also
used in advanced algorithms in games programming and animation such as keyframe interpolations
and the simulation of camera motion in a three-dimensional space [4, 5]. Some of the virtual world
interaction devices employ quaternions to parameterize rotations (Logitech 3D mouse has a
quaternion output mode).

The paper is organized as follows. The next section introduces quaternions which form the only
non-commutative example of a real division algebra. Section 3 introduces the quaternion rotation
operator, which has found several uses in classical mechanics and computer graphics. Applications
of quaternions in computer and robot vision in three-dimensional pose estimation are outlined in
Section 4. Section 5 compares parameterization of rotations using Euler angles and quaternions,
and explains why quaternions have become popular in the field of computer graphics. This section
also introduces the spherical linear interpolation method, which is being increasingly used by
animators. Some graphics related applications in fractals are also given. As a whole, the paper is
intended to provide a comprehensive understanding of the quaternion algebra and the way its
application domain is currently expanding, with particular emphasis on the utility aspects from a
graphics perspective.

2 Quaternion Algebra

Quaternions are hyper-complex numbers of rank 4, constituting a four dimensional vector space
over the field of real numbers [2]. We use the following four-tuple notation to represent a
quaternion:

q = (q0 , q1, q2, q3)
 = (q0 , w)
 = q0 + iq1 + jq2 + kq3

(1)
where q0 is the scalar component of q, and w={q1, q2, q3} form the vector part, and the entire set of
q’s is spanned by the basis quaternions:

 1 = (1, 0, 0, 0)
 i = (0, 1, 0, 0)
 j = (0, 0, 1, 0)
 k = (0, 0, 0, 1)

(2)

The orthonormal basis components i, j, k, as defined above satisfy the following well-known rules:

 i2 = j2 = k2 = ijk = −1
 ij = − ji = k
 jk = − kj = i
 ki = − ik = j

(3)
where it is implied that the product of any two terms in the above expressions is indeed a
quaternion product, which is defined in the most general form for two quaternions p = (p0, v), and q
= (q0, w) as

 pq = (p0q0 − v.w , p0 w + q0 v + v×w)
(4)

where v.w and v×w denote the familiar dot and cross products respectively, between the three-
dimensional vectors v and w. Obviously, quaternion multiplication is not commutative, since the
vector cross product is not. The set of elements {±1, ±i, ±j, ±k} form a group (known as the
quaternion group) of order 8 under multiplication. Quaternion addition is a relatively simpler
operation consisting of the addition of the corresponding components.

 p + q = (p0+q0 , v+w)
(5)

Quaternions also form a commutative group under addition, (0,0,0,0) being the identity element.
Quaternion multiplication is associative, and distributes over addition:

 (pq)r = p(qr)
 (p + q)r = pr + qr
 p(q + r) = pq + pr

(6)
As in the case of ordinary complex numbers, we can define the conjugate q* of a quaternion q = (q0,
w) as follows:

 q* = (q0, − w) = (q0 , − q1, − q2, − q3)
(7)

The above equation allows us to define the quaternion norm ||q|| as

 ||q||2 = qq* = 2
3

2
2

2
1

2
0 qqqq +++

(8)
In particular, a unit quaternion is the one for which ||q|| = 1. The components of a unit quaternion
will all have an absolute value less than or equal to 1. Any quaternion q can be normalized by
dividing by its norm, to obtain a unit quaternion. The inverse of a quaternion given by

 q−1 = 2

1
q

 q* , ||q|| ≠ 0.

(9)
satisfies the relation q q−1 = q−1q = 1. Since every non-zero quaternion q has a multiplicative
inverse, the system of quaternions forms a non-commutative division ring.

A quaternion q = (a, 0) whose vector part is zero is called a real quaternion. Similarly, q = (0, w)
whose real part is zero is called a pure quaternion (or vector quaternion). Since w is a three-
dimensional vector, clearly there is a one-to-one correspondence between vectors in three-
dimensional space and the quaternion sub-space consisting of pure quaternions (Fig. 1).

Quaternions
 R4

 Pure
 Quaternions

• q = (0, w)

 Vectors in R3

 w •

Fig. 1 A one-to-one correspondence between pure quaternions and vectors in R3.

If q is a unit quaternion, we can write q in the form (cosθ, sinθ v) where |v|=1. The logarithm of q
is a pure quaternion, defined as

 log(q) = (0, θ v).
(10)

Conversely, if we have a pure quaternion of the form q = (0, θ v) with |v|=1, then the applying the
exponentiation function we get

 exp(q) = (cosθ, sinθ v)
(11)

Based on the above two equations, we can also define

 qt = exp(t log(q))
(12)

3 Quaternion Applications in Mechanics

Perhaps the most important property of quaternions is that they can characterize rotations in a three
dimensional space. The conventional way of representing three-dimensional rotations is by using a
set of Euler angles {ψ, φ, θ} which denote rotations about independent coordinate axes. Any
general rotation can then be obtained as the result of a sequence of rotations, as given below.

−

−

 −
=

′
′
′

z
y
x

z
y
x

ψψ
ψψ

ϕϕ

ϕϕ
θθ
θθ

cossin0
sincos0
001

cos0sin
010

sin0cos

100
0cossin
0sincos

(13)
According to the well-known Euler’s theorem in classical mechanics, the most general rotation of a
rigid body with a fixed point can be achieved by a single rotation about an axis through the fixed

point. If v = (l, m, n) denote a vector in three-dimensional space, then a rotational transformation
by an angle θ about this vector is given by

+−+−−−
−−+−+−

+−−−+−
=

′
′
′

z
y
x

nlmnmnl
lmnmnlm

mnlnlml

z
y
x

θθθθθθ
θθθθθθ
θθθθθθ

cos)cos1(sin)cos1(sin)cos1(
sin)cos1(cos)cos1(sin)cos1(
sin)cos1(sin)cos1(cos)cos1(

2

2

2

(14)
Clearly, a single rotation about an equivalent axis defines the shortest path between two object
orientations. The above transformation can be conveniently represented by a quaternion product:

 w = q v q*
(15)

where w = (0, x′, y′, z′), v = (0, x, y, z), and q =

 2
sin,

2
sin,

2
sin,

2
cos θθθθ nml
 .

Obviously, a rotation does not affect the length of a vector, and hence ||w|| = ||v||. Thus for a proper
rotation q in (15) must be a unit vector. Also note that when q is a unit quaternion, we have the
property q−1 = q* , from (9). We can thus define

 Lq(v) = q v q*
(16)

as a quaternion rotation operator acting on any vector v in the three-dimensional space. This
operator plays an important role in classical mechanics as well as in computer graphics. It can be
easily shown that the operator is linear, so that

 Lq(ka+b) = k Lq(a) + Lq(b),
(17)

for any constant k, and vector quaternions a and b.

Associated with large angle rotations are the notions of angular velocity, angular momentum,
rotational frame transformations, kinematics and inverse kinematics relations. Inverse kinematics
relations involve singularities when rotations are defined in terms of Euler angles. The singularity
occurs when one of the Euler angles is 90 or 270 degrees. Similar singularities are encountered
when trying to extract Euler angles from a given matrix (Direction Cosine Matrix) corresponding to
an arbitrary rotation in space [6,7]. Quaternion based kinematics equations are numerically stable
and free of singularities. Quaternions are therefore extensively used in robotics [8], strapdown
inertial navigation systems, and spacecraft large angle maneuvers [9].

4 Quaternion Applications in Computer Vision

Estimating three-dimensional object position and orientation parameters from image data is an
important aspect of many computer vision problems. Such problems are generally solved by
extracting certain shape features from the transformed image, and by relating them to the
corresponding features of the standard image using the unknown transformation parameters (Fig. 2).

Initial Object
q

Initial Image

T(q)
Transformed Moments Initial Moments

Transformed Image

Transformed Object

Fig. 2 Schematic of a quaternion based pose estimation problem.

There are primarily two advantages with a quaternion representation of the rotational parameters:
(i) Since we get an algebraic system of equations in the unknown pose parameters, it is easier to
look for closed-form solutions for the quaternion elements. Closed-form solutions are sought after
in many vision applications where turn-around time and accuracy are of great concern. (ii) Even in
situations where a large feature vector is used (where it is required to estimate 3D rotational
parameters from a general object configuration involving occlusions), we still get a non-linear
system of algebraic equations that can be solved using well-known numerical techniques.

Moment functions are used for characterizing various geometrical features of shape in pattern
recognition applications. They can also be used in pose estimation problems to determine the
relative attitude parameters, as described above. The mathematical framework for deriving closed
form solutions of moment-quaternion equations is given in [10]. Autonomous vision based
guidance and control algorithms in robotics as well as spacecraft rendezvous and docking require
fast and accurate mechanisms for estimating 3D orientation from images. Quaternion based
solutions for such problems can be found in [11-14].

5 Quaternion Applications in Graphics and Animation

We have earlier discussed the utility of the quaternion rotation operator (refer to eqs.(15),(16),(17)).
Let q1, q2 be two unit quaternions representing arbitrary rotations in three-dimensional space. The
composition of the first rotation followed by the second can be expressed in quaternion notation as

 Lq2 (Lq1(v)) = q2 (q1 v q1
*) q2

*

 = (q2q1) v (q2q1)* = Lq2q1(v)
(18)

Thus the quaternion product q2q1 defines a quaternion rotation operator Lq2q1 which represents a
sequence of operators Lq1 followed by Lq2. This property can be generalized to the composition of
any number of rotations.

The dual operation of a rotation of a point within a fixed frame, is the rotation of the frame where
the point is inertially fixed. The coordinate transformation of the fixed point with respect to the
rotating frame is given by [3]

 v′ = q* v q = Lq
−1(v) = Lq* (v).

(19)
The representation of rotations by quaternions has several advantages over the representation by
Euler angles. The parameterization of rotations using quaternions involve only the angle and the
axis (vector) of rotation, while Euler angles define a rotation as a composition of three independent
rotations about coordinate axes. Further, the mutually independent characteristic of Euler angle
rotations breaks down when the second Euler angle becomes 90 degrees, resulting in a loss of one
degree of freedom. This phenomenon is called the gimbal lock [15]. Even different formulations of
the Euler angles in the rotation matrix (13) does not remove this singularity. The condition of the
gimbal lock could lead to frustrating results in a graphics animation.

The parameterization of orientation using Euler angles also requires more number of arithmetic
operations, compared to a quaternion based approach. Table.1 summarizes a few important points.

 Quaternions Euler Angles

Representation of
Rotations

4 Elements 9 Elements

(16 Elements if homogeneous
coordinates are used)

Composition of
Rotations

16 Multiplications and
12 Additions

27 Multiplications and
18 Additions

Table 1. Computational Complexity: Quaternions vs. Euler Angles

Several computer graphics algorithms perform incremental small-angle rotations. In order to speed-
up the process, the cosine and sine terms in the direction cosine matrix (13) are often approximated
as follows:

 Cos ψ ≈ 1, when ψ is small.

 sin ψ ≈ ψ , when ψ is small.
(20)

When a sequence of such rotations are performed, the accumulated errors in a direction cosine
matrix M, may cause the matrix to become non-orthogonal, and hence the transformation may not
represent a pure rotation. The normalization of a matrix M is done by replacing it by the matrix
M(MTM)−½. This operation is computationally more expensive than the corresponding operation in
the quaternion domain, which involves only a division by ||q||. Quaternions are also used in virtual
reality systems to describe rotations [18].

In [4], Shoemake proposed a new method using quaternions, for interpolating two key frames in an
animation sequence. Given two orientations in the 3-space, graphics animators conventionally used
linear interpolation between the corresponding Euler angles to obtain the in-between key frames.
However, such an interpolation algorithm has many limitations: (i) the interpolation does not give a
natural transition between the key frames, since Euler angle parameterization combines the
interpolated rotations along the coordinate axes, to form the resulting orientation, (ii) the extraction
of Euler angles from the transformation matrix can cause singularities, and (iii) problems such as
gimbal lock may be encountered, which would severely affect the smoothness of the animation. On
the other hand, an interpolation between the quaternions of the two key frames generates a more
realistic animation. We have already seen that a quaternion rotation operator is defined with respect
to unit quaternions (16). The set of all unit quaternions form a unit sphere within the quaternion
group. By representing the quaternions of two key frames as points on the unit sphere, a spherical
linear interpolation (SLERP) defines the intermediate sequence of rotations as a path along the
great circle between the two points on the sphere (Fig.3). SLERP and the associated quaternion
operations have become increasingly popular among animators and games programmers in the
recent past [16,17].

Great circle connecting
q1, q2 on a unit sphere
in R4.

q2

q1

Fig. 3 Spherical linear interpolation between two unit quaternions

The spherical linear interpolation between q1 and q2 is given by

 Slerp(q1, q2; u) = q1 (q1
−1 q2)u, 0 ≤ u ≤ 1.

(21)
The above formula, with exponentiation as defined in (12), requires a significant number of
quaternion multiplications. The following equation is therefore generally preferred over (21).

 Slerp(q1, q2; u) = q1 θ
θ

sin
)1sin(u− + q2 θ

θ
sin

sin u , 0 ≤ u ≤ 1.

(22)

Extensions of the above algorithm based on spherical Bezier curves for in-betweening a sequence of
(more than two) key frames can be found in [4,5].

Modeling fractal geometries using quaternions is another well researched topic in comptuer
graphics [19,20]. In the two dimensional complex domain, a Julia set is produced by an iterative
algorithm zn+1 ← zn

2 + c, for a given complex number c. The Julia set contains the initial complex
values z0 for which the system converges. Extending this idea to the vector space of quaternions, the
set of pure quaternions q0 for which the system qn+1 ← qn+1

2 + c converges for a given pure

quaternion c, is a three-dimensional fractal in R3. The problem of generating a 4D Mandelbrot set is
addressed in [20].

6 Conclusions

This paper has attempted to provide a very broad overview of the various applications of
quaternions, particularly in the context of its increasing importance in the fields of computer
graphics, animation and virtual reality. The fundamental properties of quaternions have been
outlined, and the mathematical preliminaries for using quaternions as a rotation operator have been
presented. The paper also described some of the applications in computer vision and robot vision
where quaternions could be effectively used in extracting three dimensional orientation/relative
attitude information. The paper is intended to convey the importance of quaternions to graphics and
games programmers, and also to stimulate further research towards extending/improving current
applications.

References

1. Sir William R. Hamilton, Elements of Quaternions (Third Edition), Chelsea Publishing Co.,
New York (1963).

2. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, A.K.Peters (1997).

3. Jack B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press (1999).

4. Ken Shoemake, Animating Rotation with Quaternion Curves, SIGGRAPH 85, Proc.
Computer Graphics Vol 19 No. 3, (1985), pp. 245-254.

5. S.G. Hoggar, Mathematics for Computer Graphics, Cambridge University Press (1992).

6. Funda J, On Homogeneous Transforms, Quaternions and Computational Efficiency, IEEE
Trans. on Robotics and Automation, Vol. 6, No. 3 (1990), pp. 383-388.

7. Klumpp A.R, Singularity Free Extraction of a Quaternion From a Direction Cosine Matrix,
Journal of Spacecraft and Rockets, Vol. 16, No.1 (1979), pp.1-9.

8. Yuan J.S.C, Closed Loop Manipulator Control With Quaternion Feedback, IEEE Trans. on
Robotics and Automation, Vol. 4, No. 4 (1988), pp. 434-439.

9. Wie B and Barba P.M, Quaternion Feedback for Spacecraft Large Angle Maneuvers,
Journal of Guidance Control and Dynamics, Vol. 8, No. 3 (1985), pp 360- 365.

10. R. Mukundan, Estimation of Quaternion Parameters Two-Dimensional Image Moments,
Graphical Models and Image Processing, Vol. 54, No. 4 (1992), pp. 345-350.

11. R. Mukundan and N.K. Malik, Attitude Estimation Using Moment Invariants, Pattern
Recognition Letters, Vol 14 (1993), 199-205.

12. R. Mukundan and K.R. Ramakrishnan, A Quaternion Based Solution to the Pose
Determination Problem for Rendezvous and Docking Simulations, Mathematics and
Computers in Simulation, Vol. 39 (1995), 143-153.

13. Horn B.K.P, Closed Form Solution of Absolute Orientation Using Unit Quaternions, Journal
of the Optical Society of America, Vol. 4, No. 4 (1987), pp 629- 642.

14. Pervin E and Webb J.A, Quaternions in Computer Vision and Robotics, Intnl. Conf. on
Computer Vision and Pattern Recognition, (1983), 382-383.

15. Alan Watt and Mark Watt, Advanced Animation and Rendering Techniques, Addison
Wesley (1992).

16. Dante Treglia and Mark Deloura, Games Programming Gems 3, Charles River Media
(2002).

17. Eric Lengyel, Mathematics for 3D Programming and Computer Graphics, Charles River
Media (2001).

18. John Vince, Virtual Reality Systems, Addison-Wesley (1999).

19. C.A.Pickover, Chaos and Fractals, Elsevier (1998).

20. Yan Ke and E.S. Panduranga, A Journey into the Fourth Dimension, Proc. IEEE Conf on
Visualization (1990), pp. 219-229.

