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Abstract:  

The theory of quaternions was introduced in the mid nineteenth century, and it found many 
applications in classical mechanics, quantum mechanics, and the theory of relativity. Quaternions 
were also later used in aerospace applications and flight simulators, particularly when inertial 
attitude referencing and related control schemes where employed. However, it is only in the recent 
past that graphics and game programmers discovered the true potential of quaternions and started 
using it as a powerful tool for describing rotations about an arbitrary axis. From computer graphics, 
the application domain of quaternions soon expanded into other fields such as visualization, fractals 
and virtual reality. 

This paper provides an overview of the various analytical properties of quaternions and their 
usefulness in the areas of computer/robot vision, computer graphics and animation. Particular 
emphasis is given to vision algorithms for 3D pose estimation, animation techniques involving 
viewpoint/object rotations, motion interpolation algorithms, and quaternion fractals. The benefit of 
using quaternions over other representations such as Euler angles is not just limited to singularity 
free kinematics relations – Quaternions allow us to derive closed form solutions for algebraic 
systems involving unknown rotational parameters.  Some of the neat mathematical characteristics of 
quaternions in the complex space together with a set of useful formulae are included for the benefit 
of the mathematically inclined.  

 
1   Introduction 

The discovery of quaternions is attributed to the Irish mathematician William Rowan Hamilton 
(1805-1865) whose persistent struggle to extend the notion of complex numbers represented as 
algebraic pairs to triplets, finally gave birth to a very interesting non-commutative algebra[1,2]. 
Mathematicians hailed the discovery as one of the three highly significant developments in the 
nineteenth century, the other two being the developments of the non-Euclidean geometry and the 
theoretical foundation for calculus.  Even though quaternions remained a “solution in search of a 
problem” for many years after their discovery, applications in the fields of classical mechanics and 
the theory of relativity were identified in the early twentieth century. The capability of quaternions 



to succinctly represent three-dimensional rotations about an arbitrary axis motivated researchers to 
employ quaternion algebra in rotational kinematics equations. As a result, several new application 
areas involving quaternion based algorithms emerged [3]. These include diverse fields such as 
robotics, orbital mechanics, aerospace technologies, and inertial navigation systems.  

The motivation for this paper is derived from the recent developments in the fields of computer 
graphics and games programming where quaternions have been very effectively used.  Graphics 
programmers have now realized the potential of quaternions as a very general and powerful rotation 
operator. Recent graphics APIs provide functions for quaternion operations. For example, the Java-
3D API has classes (javax.vecmath.Quat4d) for creating quaternion objects, Povray (Persistence of 
Vision Ray Tracer) supports quaternions, Quickdraw 3D provides routines for quaternion 
operations, and Mathematica has an add-on package  “Algebra `Quaternions`”. Quaternions are also 
used in advanced algorithms in games programming and animation such as keyframe interpolations 
and the simulation of camera motion in a three-dimensional space [4, 5]. Some of the virtual world 
interaction devices employ quaternions to parameterize rotations (Logitech 3D mouse has a 
quaternion output mode). 

The paper is organized as follows. The next section introduces quaternions which form the only 
non-commutative example of a real division algebra. Section 3 introduces the quaternion rotation 
operator, which has found several uses in classical mechanics and computer graphics. Applications 
of quaternions in computer and robot vision in three-dimensional pose estimation are outlined in 
Section 4.  Section 5 compares parameterization of rotations using Euler angles and quaternions, 
and explains why quaternions have become popular in the field of computer graphics. This section 
also introduces the spherical linear interpolation method, which is being increasingly used by 
animators. Some graphics related applications in fractals are also given. As a whole, the paper is 
intended to provide a comprehensive understanding of the quaternion algebra and the way its 
application domain is currently expanding, with particular emphasis on the utility aspects from a 
graphics perspective. 
 

2   Quaternion Algebra 

Quaternions are hyper-complex numbers of rank 4, constituting a four dimensional vector space 
over the field of real numbers [2]. We use the following four-tuple notation to  represent a 
quaternion: 

q = (q0 , q1, q2, q3) 
   = (q0 , w) 
   =  q0 + iq1 + jq2 + kq3 

(1) 
where q0 is the scalar component of q, and  w={q1, q2, q3} form the vector part, and the entire set of 
q’s  is spanned by the basis quaternions: 

 1 = (1, 0, 0, 0) 
 i = (0, 1, 0, 0) 
 j = (0, 0, 1, 0) 
 k = (0, 0, 0, 1) 

(2) 



The orthonormal basis components i, j, k, as defined above satisfy the following well-known rules: 

 i2 = j2 = k2 = ijk = −1 
  ij = − ji = k 
 jk = − kj = i 
 ki = − ik = j 

(3) 
where it is implied that the product of any two terms in the above expressions is indeed a 
quaternion product, which is defined in the most general form for two quaternions p = (p0, v), and q 
= (q0, w) as  

   pq = ( p0q0 − v.w ,    p0 w + q0 v + v×w )   
(4) 

where v.w and v×w denote the familiar dot and cross products respectively, between the three- 
dimensional vectors v and w. Obviously, quaternion multiplication is not commutative, since the 
vector cross product is not. The set of elements {±1, ±i, ±j, ±k} form a group (known as the 
quaternion group) of order 8 under multiplication. Quaternion addition is a relatively simpler 
operation consisting of the addition of the corresponding components. 

   p + q = ( p0+q0 , v+w)   
(5) 

Quaternions also form a commutative group under addition, (0,0,0,0) being the identity element. 
Quaternion multiplication is associative, and distributes over addition: 
 
 (pq)r = p(qr) 
 (p + q)r = pr + qr 
 p(q + r) = pq + pr 

(6) 
As in the case of ordinary complex numbers, we can define the conjugate q* of a quaternion q = (q0, 
w)  as follows: 

 q* = (q0, − w)  = (q0 , − q1, − q2, − q3) 
(7) 

The above equation allows us to define the quaternion norm ||q||  as  

 ||q||2 = qq* =    2
3

2
2

2
1

2
0 qqqq +++

(8) 
In particular, a unit quaternion is the one for which  ||q||  = 1.  The components of a unit quaternion 
will all have an absolute value less than or equal to 1.  Any quaternion q can be normalized by 
dividing by its norm, to obtain a unit quaternion.  The inverse of a quaternion given by 

 q−1 = 2

1
q

 q* ,  ||q||  ≠ 0. 

(9) 
satisfies the relation  q q−1 = q−1q = 1. Since every non-zero quaternion q has a multiplicative 
inverse, the system of quaternions forms a non-commutative division ring. 



A quaternion q = (a, 0) whose vector part is zero is called a real quaternion. Similarly, q = (0, w) 
whose real part is zero is called a pure quaternion (or vector quaternion).  Since w is a three-
dimensional vector, clearly there is a one-to-one correspondence between vectors in three-
dimensional space and the quaternion sub-space consisting of pure quaternions (Fig. 1). 
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Fig. 1  A one-to-one correspondence between pure quaternions and vectors in R3. 

If  q is a unit quaternion, we can write q in the form (cosθ, sinθ v) where |v|=1.  The logarithm of q 
is a pure quaternion, defined as 

 log(q) = (0, θ v). 
(10) 

Conversely, if we have a pure quaternion of the form q = (0, θ v)  with |v|=1, then the applying the 
exponentiation function we get 

 exp(q) = (cosθ, sinθ v) 
(11) 

Based on the above two equations, we can also define 

 qt = exp(t log(q)) 
(12)  

3   Quaternion Applications in Mechanics 

Perhaps the most important property of quaternions is that they can characterize rotations in a three 
dimensional space. The conventional way of representing three-dimensional rotations is by using a 
set of Euler angles {ψ, φ, θ} which denote rotations about independent coordinate axes. Any 
general rotation can then be obtained as the result of a sequence of rotations, as given below. 
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(13) 
According to the well-known Euler’s theorem in classical mechanics, the most general rotation of a 
rigid body with a fixed point can be achieved  by a single rotation about an axis through the fixed 



point.  If  v = (l, m, n) denote a vector in three-dimensional space, then a rotational transformation 
by an angle θ  about this vector is given by 
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(14) 
Clearly, a single rotation about an equivalent axis defines the shortest path between two object 
orientations.  The above transformation can be conveniently represented by a quaternion product: 

 w =  q v q* 
(15) 

where  w = (0, x′, y′, z′),   v = (0, x, y, z),  and  q = 



 2
sin,

2
sin,

2
sin,

2
cos θθθθ nml
 . 

Obviously, a rotation does not affect the length of a vector, and hence ||w|| = ||v||. Thus for a proper 
rotation q in (15) must be a unit vector.  Also note that when q is a unit quaternion, we have the 
property q−1 = q* , from (9).  We can thus define  

 Lq(v) = q v q* 
(16) 

as a quaternion rotation operator acting on any vector v in the three-dimensional space. This 
operator plays an important role in classical mechanics as well as in computer graphics. It can be 
easily shown that the operator is linear, so that 

  Lq(ka+b) = k Lq(a) + Lq(b), 
(17) 

for any constant k, and vector quaternions a and b. 

Associated with large angle rotations are the notions of angular velocity, angular momentum, 
rotational frame transformations, kinematics and inverse kinematics relations. Inverse kinematics 
relations involve singularities when rotations are defined in terms of Euler angles. The singularity 
occurs when one of the Euler angles is 90 or 270 degrees. Similar singularities are encountered 
when trying to extract Euler angles from a given matrix (Direction Cosine Matrix) corresponding to 
an arbitrary rotation in space [6,7]. Quaternion based kinematics equations are numerically stable 
and free of singularities. Quaternions are therefore extensively used in robotics [8], strapdown 
inertial navigation systems, and spacecraft large angle maneuvers [9]. 

  
4   Quaternion Applications in Computer Vision 

Estimating three-dimensional object position and orientation parameters from image data is an 
important aspect of many computer vision problems. Such problems are generally solved by 
extracting certain shape features from the transformed image, and by relating them to the 
corresponding features of the standard image using the unknown transformation parameters (Fig. 2).  
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Fig. 2  Schematic of a quaternion based pose estimation problem. 

 

There are primarily two advantages with a quaternion representation of the rotational parameters:  
(i) Since we get an algebraic system of equations in the unknown pose parameters, it is easier to 
look for closed-form solutions for the quaternion elements. Closed-form solutions are sought after 
in many vision applications where turn-around time and accuracy are of great concern. (ii) Even in 
situations where a large feature vector is used (where it is required to estimate 3D rotational 
parameters from a general object configuration involving occlusions), we still get a non-linear 
system of algebraic equations that can be solved using well-known numerical techniques. 

Moment functions are used for characterizing various geometrical features of shape in pattern 
recognition applications. They can also be used in pose estimation problems to determine the 
relative attitude parameters, as described above. The mathematical framework for deriving closed 
form solutions of moment-quaternion equations is given in [10].  Autonomous vision based 
guidance and control algorithms in robotics as well as spacecraft rendezvous and docking require 
fast and accurate mechanisms for estimating 3D orientation from images. Quaternion based 
solutions for such problems can be found in  [11-14].  

 
5   Quaternion Applications in Graphics and Animation 

We have earlier discussed the utility of the quaternion rotation operator (refer to eqs.(15),(16),(17)). 
Let q1, q2 be two unit quaternions representing arbitrary rotations in three-dimensional space. The 
composition of the first rotation followed by the second can be expressed in quaternion notation as 

 Lq2 (Lq1(v)) =  q2 (q1 v q1
*) q2

* 

         = (q2q1) v (q2q1)*  =  Lq2q1(v) 
(18) 

Thus the quaternion product q2q1 defines a quaternion rotation operator Lq2q1 which represents a 
sequence of operators Lq1 followed by Lq2.  This property can be generalized to the composition of 
any number of rotations.  



The dual operation of a rotation of a point within a fixed frame, is the rotation of the frame where 
the point is inertially fixed.  The coordinate transformation of the fixed point with respect to the 
rotating frame is given by [3] 

 v′  =  q* v q   =  Lq
−1(v)  =  Lq* (v). 

(19) 
The representation of rotations by quaternions has several advantages over the representation by 
Euler angles.  The parameterization of rotations using quaternions involve only the angle and the 
axis (vector) of rotation, while Euler angles define a rotation as a composition of three independent 
rotations about coordinate axes.  Further, the mutually independent characteristic of Euler angle 
rotations breaks down when the second Euler angle becomes 90 degrees, resulting in a loss of one 
degree of freedom. This phenomenon is called the gimbal lock [15]. Even different formulations of 
the Euler angles in the rotation matrix (13) does not remove this singularity. The condition of the 
gimbal lock could lead to frustrating results in a graphics animation. 

The parameterization of orientation using Euler angles also requires more number of arithmetic 
operations, compared to a quaternion based approach. Table.1 summarizes a few important points. 

 

 
 Quaternions Euler Angles 

Representation of 
Rotations 

4 Elements 9 Elements 

(16 Elements if homogeneous 
coordinates are used) 

Composition of  
Rotations 

16 Multiplications and 
12 Additions 

27 Multiplications and 
18 Additions 

Table 1. Computational Complexity: Quaternions vs. Euler Angles 

Several computer graphics algorithms perform incremental small-angle rotations. In order to speed-
up the process, the cosine and sine terms in the direction cosine matrix (13) are often approximated 
as follows: 

 Cos ψ ≈  1,  when ψ is small. 

 sin ψ ≈  ψ ,  when ψ is small. 
(20) 

When a sequence of such rotations are performed, the accumulated errors in a direction cosine 
matrix M, may cause the matrix to become non-orthogonal, and hence the transformation may not 
represent a pure rotation. The normalization of a matrix M is done by replacing it by the matrix 
M(MTM)−½.  This operation is computationally more expensive than the corresponding operation in 
the quaternion domain, which involves only a division by ||q||. Quaternions are also used in virtual 
reality systems to describe rotations [18]. 



In [4], Shoemake proposed a new method using quaternions, for interpolating two key frames in an 
animation sequence.  Given two orientations in the 3-space, graphics animators conventionally used 
linear interpolation between the corresponding Euler angles to obtain the in-between key frames. 
However, such an interpolation algorithm has many limitations: (i) the interpolation does not give a 
natural transition between the key frames, since Euler angle parameterization combines the 
interpolated rotations along the coordinate axes, to form the resulting orientation, (ii) the extraction 
of Euler angles from the transformation matrix can cause singularities, and (iii) problems such as 
gimbal lock may be encountered, which would severely affect the smoothness of the animation. On 
the other hand, an interpolation between the quaternions of the two key frames generates a more 
realistic animation. We have already seen that a quaternion rotation operator is defined with respect 
to unit quaternions (16). The set of all unit quaternions form a unit sphere within the quaternion 
group. By representing the quaternions of two key frames as points on the unit sphere, a spherical 
linear interpolation (SLERP) defines the intermediate sequence of rotations as a path along the 
great circle between the two points on the sphere (Fig.3). SLERP and the associated quaternion 
operations have become increasingly popular among animators and games programmers in the 
recent past [16,17]. 
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Fig. 3  Spherical linear interpolation between two unit quaternions 

The spherical linear interpolation between q1 and q2 is given by 

 Slerp(q1, q2; u)  =  q1 (q1
−1 q2)u,  0 ≤  u ≤ 1. 

(21) 
The above formula, with exponentiation as defined in (12), requires a significant number of 
quaternion multiplications. The following equation is therefore generally preferred over (21). 

 Slerp(q1, q2; u)  =  q1 θ
θ

sin
)1sin( u−  + q2 θ

θ
sin

sin u , 0 ≤  u ≤ 1. 

(22) 

Extensions of the above algorithm based on spherical Bezier curves for in-betweening a sequence of 
(more than two) key frames can be found in [4,5]. 

Modeling fractal geometries using quaternions is another well researched topic in comptuer 
graphics [19,20]. In the two dimensional complex domain, a Julia set is produced by an iterative 
algorithm zn+1 ← zn

2 + c, for a given complex number c. The Julia set contains the initial complex 
values z0 for which the system converges. Extending this idea to the vector space of quaternions, the 
set of pure quaternions q0 for which the system qn+1 ← qn+1

2 + c  converges for a given pure 



quaternion c, is a three-dimensional fractal in R3. The problem of generating a 4D Mandelbrot set is 
addressed in [20]. 
 

6   Conclusions 

This paper has attempted to provide a very broad overview of the various applications of 
quaternions, particularly in the context of its increasing importance in the fields of computer 
graphics, animation and virtual reality. The fundamental properties of quaternions have been 
outlined, and the mathematical preliminaries for using quaternions as a rotation operator have been 
presented. The paper also described some of the applications in computer vision and robot vision 
where quaternions could be effectively used in extracting three dimensional orientation/relative 
attitude information. The paper is intended to convey the importance of quaternions to graphics and 
games programmers, and also to stimulate further research towards extending/improving current 
applications.  
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