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Abstract

In this expository lecture, we explain how problems of classical polynomial algebra
may be understood and numerically solved when they appear in the context of Scien-
tific Computing, i.e. with data of limited accuracy. A suitable conceptual framework is
introduced and its use explained in a number of situations.

1 Introduction

We consider polynomials in their function as a modelling tool of Scientific Computing; through-
out, coefficients and variables take values in IR or C. Moreover, we assume that some coefficients
are only known to a limited accuracy. This may reflect the limited accuracy of measured or
observed data or the effect of previous numerical computation. This assumption that algebraic
objects may have a “tolerance” has far-reaching consequences for their mathematical and com-
putational treatment. But linear algebra has accepted this assumption a long time ago; it has
led to the enormous growth of numerical linear algebra into one of the supporting pillars of
Scientific Computing. In an analogous fashion, the presently evolving numerical polynomial
algebra studies the modifications and extensions of classical polynomial algebra necessary to
accomodate the presence of inaccurate data and inexact computation. An outstanding token
of this new development is the Strategic Alliance of 1998 between the scientific software houses
WaterlooMaple and NAg which has shown its effects in the latest release Maple6.

Situations with geometric aspects are a typical source of polynomial systems; e.g., many
problems in robotics permit such a formulation where some coefficients represent lengths and
angles of robotic agents and relative positions of objects to be manipulated. It is obvious that
these data have only a limited meaningful accuracy. In other areas of Scientific Computing
(e.g. biology or economy), the indetermination of some coefficients may amount to several
percent! In most real-life situations, the coefficient 4.865 in a polynomial p(x, y) := x3 −
2.913 x2y + 4.865 xy2 − 0.649 y3 does not signify that precise rational number but rather any
real number from a sufficiently small neighborhood of 4.865, say from the interval [4.864, 4.866].
The boundaries of that neighborhood are themselves not sharply defined: The appropriate
interpretation is that there is an indetermination of order 10−3.

In this lecture (cf. also [2]), we formalize the concept of data with an indetermination and
show how the continued use of traditional mathematics is possible under these circumstances:



Valid approximate results are exact results for data within the tolerance neighborhood of the
specified data. This principle leads to an embedding of polynomial algebra into analysis; such
an embedding has become standard in computational linear algebra (linear equations, eigen-
problems, least squares problems etc.). We introduce the necessary conceptual and algorithmic
framework for this numerial polynomial alebra, and we consider a number of particular problems
from the new point of view:

– Zeros of univariate polynomials,
– zeros of systems of multivariate polynomials,
– clusters of polynomial zeros,
– “solutions” of near-consistent overdetermined polynomial systems,
– greatest common divisors,
– factorization of multivariate polynomials.

Finally, we discuss the benefits which may accrue from the implementation of numerical poly-
nomial algebra into current software systems for scientific computing.

2 Empirical Polynomials

In dealing with problems in Technical Scientific Computing, we observe that here are two
categories of numerical data:

- intrinsic data represent an exact value from IR or C in the sense of classical mathematics;

- empirical data have a specified value from IR or C and a tolerance ε ∈ IR+ which indicate
the range of potential values for that quantitiy as described below.

A polynomial with at least one empirical coefficient will be called a polynomial with a tolerance
or an empirical polynomial. The polynomial with the specified values of its empirical coefficients
is the specified polynomial.

Empirical data and tolerances are a part of our everyday experience:

a) The specification of the electric voltage supplied to our homes has a specified value and a
tolerance which is commonly interpreted in this way: “Almost always”, the deviation of the
momentary voltage from the specified one will be less than the tolerance; occasionally, the
deviation may exceed this tolerance somewhat. An excess by an order of magnitude is not to
be expected.

b) When the level of some larger body of water is reported as “5.16 m” it is clear that the
reporting of more decimal digits would be meaningless: We assume that several measurements
of the water level, at the same location and within a short time interval, will produce slightly
deviating values. If most of these lie between 5.15 and 5.17, with occasional values like 5.14 or
5.19, we would associate a tolerance of .01 with the specified value 5.16.

Formally, with an empirical data quantity with M components, we associate a family of
neighborhoods, parametrized by a positive real δ in the following way (cf. also [2]): Let

ā = (ᾱ1, . . . , ᾱM) ∈ CM or IRM , (1)

be the specified value of the empirical data quantitiy, with the associated tolerance

e := (ε1, . . . , εM) , εj > 0 . (2)



Definition 1: The δ-neighborhood Nδ(ā, e) of the empirical data quantity (ā, e) contains those
values ã = (α̃1, . . . , α̃M) of the quantity for which

‖ã− ā‖∗e := ‖(. . . , |α̃j−ᾱj |
εj

, . . . )‖∗ ≤ δ . (3)

For ā with real components ᾱj, it must be specified (or clear from the context) whether the
ã ∈ Nδ(p̄, e) are restricted to real values or not. 2

The norm ‖..‖∗ in (3) is a vector norm in the dual vector space (IRM)∗ of IRM , i.e. the vector
space of the linear functionals on IRM : For an absolute norm ‖..‖ on IRM , the associated dual
norm or operator norm is defined as

‖vT‖∗ := sup
u 6=0

|vTu|
‖u‖

. (4)

In a finite-dimensional vector space, the sup in (4) is always attained.

In this lecture, we will exclusively use the combination

‖u‖ :=
∑
j

|uj| , ‖vT‖∗ := max
j
|vj| ; (5)

for a ∈ Nδ(ā, e), it requires

|α̃j − ᾱj| ≤ εj δ , j = 1(1)M . (6)

This is the only norm where the requirements on the individual components of ã remain sepa-
rated.

For an empirical polynomial (p̄, e) in s ≥ 1 variables, with the specified polynomial p̄ ∈
C[x1, . . . , xs],

p̄ =
∑
j∈J

ᾱj x
j , J ⊂ INs, ᾱj ∈ C or IR , (7)

we let
∅ 6= J̃ := {j ∈ J : αj is an empirical coefficient of (p̄, e)} ⊂ J ;

be the empirical support of (p̄, e), with |J̃ | = M . Thus, the components εj of the tolerance e of
the empirical polynomial (p̄, e) refer only to subscripts in the empirical support J̃ :

e := (εj > 0 , j ∈ J̃) . (8)

Definition 2: The δ-neighborhood Nδ(p̄, e) contains those polynomials p̃ ∈ C[x1, . . . , xs], p̃(x)
=
∑
j∈J α̃jx

j, with

‖p̃− p̄‖∗e := ‖(. . . , |α̃j−ᾱj |
εj

, . . . , j ∈ J̃)‖∗ ≤ δ ,

α̃j = ᾱj , j ∈ J \ J̃ .
(9)

I.e., p̃ ∈ IPs is a δ-neighbor of p̄ with tolerance e iff it has the same support as p̄ and if its
coefficients satisfy (9). For p̄ with real coefficients ᾱj, it must be specified (or clear from the
context) whether Nδ(p̄, e) is restricted to real polynomials or not. 2



In accordance with (6) and our intuitive introduction of the term “tolerance”, we will say
that

ã ∈ N1(ā, e)

p̃ ∈ N1(p̄, e)

}
⇐⇒

ã

p̃

}
is indistinguishable from

{
ā

p̄
. (10)

Here, the term “indistinguishable” in (10) is to mean that all data in N1(ā, e) furnish an equally
valid model for the situation under consideration. In particular, it implies that there are no
better or worse data in N1(ā, e) for that purpose!

But (6) with δ = 1 cannot be considered as a strict bound for valid values of the empirical
quantity (ā, e). Such an assumption would simply shift the discontinuity between the statements
ã = ā and ã 6= ā to another point. Such discontinuities are meaningless for data in C or IR
and also destroy the possibility of approximate (e.g. floating-point) computation; therefore, we
have introduced the parametrized family of neighborhoods Nδ. Here, δ = 1 is not a sharp bound
for the validity of a data quantity ã but only a mark on the continuous δ-scale: The validity
of ã decreases with an increase of the value of δ necessary to achieve ã ∈ Nδ(ā, e). The same
interpretation applies for empirical polynomials.

A more precise adjustment of a validity scale to particular values of δ will vary with the
application and must be left to the experts who have modelled a particular situation. But quite
generally, one may conceive of an interpretation of δ like

δ ≤ 1 . . . 3 . . . 10 . . . 30 . . . 100

valid probably possibly probably invalid
valid valid invalid

(11)

Example 1: Consider the empirical polynomial (p̄, e) with

p̄(x, y) = x3 + 4.865xy2 − y3 + 2.902x2 + 0.0xy − 8.389x+ 2 y − 17.54 ,

with
J = {(3, 0), (1, 2), (0, 3); (2, 0), (1, 1); (1, 0), (0, 1); (0, 0)} ,

J̃ = {(1, 2); (2, 0), (1, 1); (1, 0); (0, 0)} .

e = (10−3; 5 · 10−4, 10−4; 10−3; 5 · 10−3) ,

With our norm definiton (5), the following polynomials are indistinguishable from p̄ and hence
valid representations of the empirical polynomial (p̄, e) :

p̃1(x, y) = x3 + 4.8642xy2 − y3 + 2.9025x2 − 8.3888x+ 2 y − 17.541 ,

p̃2(x, y) = x3 + 4.865xy2 − y3 + 2.9018x2 − 0.0001xy − 8.3896x+ 2 y − 17.536 .

Note that the xy-term has an empiric coefficient 0 in (p̄, e); therefore, it must appear in the
supports J and J̃ and it may appear with a sufficiently small coefficient in a valid representation
of (p̄, e), cf. p̃2. 2



3 Valid Approximate Results

It is our goal to solve algebraic problems with polynomial data of limited accuracy in a mean-
ingful way. Since we have a dense infinite set Ã1 ⊂ A of equally valid input data for such a
problem, we must generally expect a dense infinite set of result values which are equally valid
as results of the given problem. We will now formalize this situation; cf. also [2].

For an empirical algebraic problem, we consider the mapping from the space A of the
empirical data (ā, e) to a result space Z which assigns to a particular input value ã ∈ Nδ̄(ā, e)
the value z̃ ∈ Z of the exact result of the algebraic problem for ã. Here, z̃ may be a real
or a complex number or a set of such numbers. When there are several independent result
quantities, we may restrict our mapping to one particular result quantity. (Integer results are
not considered in this lecture.) δ̄ > 1 denotes a value beyond which we do not wish to consider
the indetermination of our input data; cf. (3) and (11). We consider the intrinsic data as a
fixed part of the specification of our algebraic problem and also of the mapping introduced
above.

Definition 3: For an empirical algebraic problem, with empirical data (ā, e), the mapping

F : Ãδ̄ ⊂ A −→ Z (12)

which assigns to each data value ã = ( α̃j ) in Ãδ̄ the exact result z ∈ Z of the algebraic problem
with these data, is called the data→result mapping for that problem. 2

Definition 4: For a data→result mapping (12), the sets

Zδ := {z := F (a) , a ∈ Nδ(ā, e)} , δ ≤ δ̄ , (13)

are called (δ-)pseudoresult sets of (12). In the case of real specified data ā, it must be clear
whether the data neighborhoods Nδ(ā, e) are restricted to the real domain or not. 2

Obviously, each result value z̃ ∈ Zδ is the exact result of the algebraic problem for some
input data ã ∈ Nδ(ā, e). In particular, each result value in Z1 is the exact result for some input
data which are indistinguishable from the specified data ā (cf. (10)) and thus constitute a valid
representation of the model under discussion. Therefore, each value in the 1-pseudoresult set
Z1 is a valid result of the algebraic problem for that model, as valid as any other value in Z1.
Moreover, in the relaxed sense of (11), this is also true of values in Zδ with δ = O(1).

Definition 5: In the situation described by a data→result mapping (12), the values in the
δ-pseudoresult sets Zδ with δ = O(1) are valid approximate results of the empirical algebraic
problem. 2

The word “approximate” in Definition 5 serves to emphasize that any δ-pseudoresult –
while being the exact result for some ã ∈ Nδ(ā, e) in the classical sense – can only represent an
approximate result for the problem at hand.

Example 2: Let the univariate monic polynomial

p̄(x) := x4 − 2.83088x3 + 0.00347x2 + 5.66176x− 4.00694 (14)

be the specified polynomial of an empirical polynomial (p̄, e) with the tolerance vector e =
(εj = 10−5, j = 0(1)3). This means that all coefficients except the leading one are known only
to within one unit of their trailing digit; we assume that they are restricted to the real domain.



We wish to determine the zeros of the empirical polynomial (p̄, e). As p̄ is a perturbed version
of (x−

√
2)3(x+

√
2) we expect one real zero in the left halfplane (near −

√
2) and three zeros

in the right halfplane (near
√

2).

Let us first look at the zero in the left halfplane: With a considerate shifting of the coefficients
to appropriate corners of the domain N1 and with the help of a zerofinding code, we may con-
vince ourselves that the negative zero can take values in the interval [−1.4142168,−1.4142104]
(rounded to 7 digits), for a ∈ N1. Thus, e.g., any of the 6-digit values −1.414216, . . . ,−1.414211
is a valid approximate zero z̃ of (p̄, e).

This changes dramatically when we consider the three zeros in the right halfplane which form
a cluster. For the specified polynomial p̄, a zerofinder yields the three close real zeros (rounded
to 5 digits) 1.41421, 1.41481, 1.41607. However, the equally valid polynomial

p̃(x) := x4 − 2.83087x3 + 0.00348x2 + 5.66177x− 4.00693 ∈ N1(p̄, e)

yields the exact zeros (rounded to 5 digits) 1.38583 and 1.42963±0.02578 i in the right halfplane!

One can easily convince oneself that it is not possible to attribute individual pseudozero sets Z1

to each of the three zeros in the right halfplane but that we must treat the three zeros as one
result which may as well consist of three real zeros as of one real zero and a complex conjugate
pair. Quantitatively, it appears that this pseudozero set Z1 for the zero triple in the right
halfplane has a diameter of nearly 3 · 10−2 ! Each z̃ ∈ Z1 is an exact zero of some p̃ ∈ N1(p̄, e)
and there are exactly three zeros (counting potential multiplicities) in Z1 for each p̃ ∈ N1(p̄, e).
2

So far, we have tacitly assumed some basic regularity of the algebraic problem: We expect
that the domain Ãδ̄ of the data→result mapping F is open in the data space A and that it
contains the neighborhood Nδ̄(ā, e) so that results exist for all ã in a neighborhood Nδ(ā, e), δ <
δ̄. We also expect that F is surjective so that the family {Zδ} of pseudoresult sets consists of
compact connected sets in the natural topology of the result space Z and that a full neighborhood
of an approximate result value z̃ ∈ Zδ also consists of approximate results, perhaps for a slightly
larger δ. These are natural assumptions for a problem whose results are to be determined by
approximate computations.

Proposition 1: For an algebraic problem with empirical data, assume that

M := dimA ≥ dimZ =: m , (15)

that the data→result mapping F is continuous on the open domain Ãδ̄ ⊃ Nδ̄(ā, e), δ̄ > 1, and
that the image of Ãδ̄ by F has dimension m in Z. Then, the δ-pseudoresult sets Zδ are compact
connected sets in Z.

Proof: By (3) and our assumptions, the neighborhoods Nδ(ā, e) are compact connected sets
of dimension M in A. A continuous surjective mapping maps a compact connected set onto a
compact connected set in the image space. 2

Definition 6: An empirical algebraic problem whose data→result mapping satisfies the hy-
potheses of Proposition 1 is called well-posed, otherwise it is called ill-posed. 2

There are various non-trivial ways in which an algebraic problem may be ill-posed:

1) A (proper) result of the algebraic problem is only defined for data on a manifold S of a
dimension < M in A:



In this case, if the intersection of S with Nδ̄(ā, e) is empty, the family of pseudoresult sets
is empty and no valid representation of the algebraic problem has an exact solution. On the
other hand, if the domain of F on the manifold S has a component of dimension d ≥ m (the
result space dimension) which has a nonempty intersection with the neighborhoods Nδ(ā, e)
for all δ ≥ δ0, δ0 ≤ 1, we may restrict F to this component. Moreover, if this intersection is
homeomorphic to a compact part of a linear space of dimension d, we have – in a sense – a
well-posed empirical problem. Note that the exact problem with the specified data ā has no
solution if δ0 > 0!

Example 3: Consider two real univariate empirical polynomials (p̄i, ei), i = 1, 2, of degrees > 1
and assume that the p̄i have disjoint simple zeros near some ζ0 6= 0 while their remaining zeros
are sufficiently distinct so that gcd(p̄1, p̄2) = 1. But we assume that ζ0 ∈ Z1(p̄i, ei), i = 1, 2.
In the data space A of all the empirical coefficients of the two polynomials, let S be that
component of the coefficient manifold where gcd(p̃1, p̃2) has positive degree which intersects
with N1((p̄1, p̄2), (e1, e2)). With this restriction, the problem of determining a nontrivial gcd of
the two empirical polynomials is regular and has valid approximate solutions. 2

2) The dimension of the image F (Ãδ̄) in the result space Z is lower than m. This implies that,
in each arbitrarily small neighborhood in Z of a valid approximate result z̃, there are infinitely
many values z which cannot be interpreted as exact results of the algebraic problem for whatever
values of the empirical data. Thus, the perturbations induced by numerical computation will
generally prevent a computed result to be an element of a pseudoresult set although it may be
very close to a valid approximate result.
This phenomenon may have two reasons: Either the dimension condition (15) of Proposition
1 is violated, e.g. when there are fewer empirical data items than there are components in
a result of the problem. Or the data→result mapping is not surjective because the algebraic
problem restricts its results to some lower-dimensional manifold in the result space. In both
cases, the problem is not well-posed by our Definition 5.

Example 4: Consider a monic univariate polynomial p̄ with one empiric coefficient; we wish to
determine numerically an approximate quadratic polynomial divisor s̃. Here, the empirical data
space has dimension M = 1 while the result space has dimension m = 2 so that condition (15)
is violated. Nevertheless, we may wish to call s̃ a valid approximate divisor if it is sufficiently
close to an exact divisor of some p̃ ∈ N1(p̄, e) in a sense to be specified. 2

Ill-posed problems abound in polynomial algebra; thus, their numerical treatment for the
case of empirical data is of particular interest. Later in this lecture, we will show how this can
be achieved in particular instances; cf. sections 7 and 8. At the moment, we assume that we
are dealing with well-posed problems: Then, the formal framework introduced in the previous
two sections poses three fundamental tasks:

(i) Given a value z̃ ∈ Z from whatever source, determine whether this is a valid approximate
result of the empirical problem.

(ii) If z̃ is invalid by a moderate margin only, find a valid approximate result by some further
computation.

(iii) For the numerical specification of a valid approximate result z̃, how many digits are mean-
ingful ?

The next three sections will be devoted to the solution of these three tasks.



4 Backward Error of Approximate Results

The pseudoresult sets of empirical algebraic problems are an important conceptual tool; but
their explicit determination, even to a low degree of relative accuracy, requires a very high
computational effort in all but trivial situations. If the results have several complex components,
even a representation of some Zδ appears infeasible. The more is it important that we are able
to check and verify whether some z̃ ∈ Z is a valid approximate solution.

According to Definition 3, z̃ is a valid approximate result if there exist data ã in some
neighborhood Nδ(ā, e) with δ = O(1) such that z̃ is the exact result of our problem with data
ã. In the verification of this condition, the set of all data ã ∈ A for which this condition holds
plays an important role.

Definition 7: For an empirical problem with data→result function F : A → Z, and for a
given result value z̃ ∈ Z, the equivalent-data set is defined by

M(z̃) := {ã ∈ A : F (ã) = z̃} , (16)

For algebraic problems, the equivalent-data set is generally an algebraic manifold in the space
A of the empirical data. 2

Example 5: Consider an empirical polynomial (p̄, e), with p̄(x) =
∑
j∈J ᾱjx

j and the empirical

support J̃ ⊂ J ; cf. (7). In order that a specified z̃ is a zero of p̃(x) =
∑
j∈J α̃jx

j, the coefficients
α̃ must satisfy

p̃(z̃) =
∑
j∈J

α̃j z̃
j =

∑
j∈J

(α̃j − ᾱj) z̃j + p̄(z̃) = 0 ;

Since α̃j = ᾱj for j ∈ J \ J̃ ,

M(z̃) := {a ∈ A :
∑
j∈J̃

(α̃j − ᾱj) z̃j + p̄(z̃) = 0} . (17)

Thus, the equivalent-data set is a linear manifold in the space A of the empirical coefficients;
its representation requires merely the computation of the residual p̄(z̃). 2

As in this example, explicit or implicit representations for the equivalent-data manifold can
generally be obtained for computational algebraic problems. Moreover, M(z) is often a linear
manifold in A; this is the case if the empirical data are coefficients of polynomials which occur
in the problem in a linear fashion: polynomials are linear in their coefficients!

The verification task

Given z̃ ∈ Z : ∃ ã ∈ Nδ(ā, e) : F (ã) = z̃ ? (18)

may now be reduced to the following two steps:

(i) Determine the equivalent-data manifold M(z̃);

(ii) Check whether M(z̃) has a non-empty intersection with Nδ(ā, e).

Since the neighborhood Nδ(ā, e) is defined by the metric (3) step (ii) is equivalent to:
(ii)’ Find the shortest distance δ(z̃) of M(z̃) from ā in the metric (3).

Definition 8: In the situation just described,

δ(z̃) := min
a∈M(z̃)

‖a− ā‖∗e (19)



is the backward error1 of the approximate result z̃; cf. (3) - (6) for the definition of ‖..‖∗e. The
shortest distance fromM(z̃) to ā is well-defined becauseM(z̃)∩Nδ̄(ā, e) is a compact set. 2

To simplify the notation and without loss of generality, we shift the origin of the data space
A to ā; intuitively, this means that we use the deviations ∆αj := αj− ᾱj as variables in A. For
a linear manifold, the task of finding the shortest norm distance from the origin is classical.
Here, we consider only the norm and dual norm (5) and the associated norms ‖..‖∗e from (3)
and ‖u‖e :=

∑
j εj |uj| ; for other norms, see, e.g., [2].

For a linear manifold of codimension 1 (a “hyperplane”), there are explicit expressions for
the shortest norm distance from the origin as well as for the point where it is attained:

Proposition 2: Consider the linear manifold M(c) of codimension 1 in CM specified by the
linear equation

∑M
j=1 γj αj = γ0. The shortest max-norm distance of M(c) from the origin is

min
a∈M(c)

max
j
|αj| =

|γ0|∑M
j=1 |γj|

, (20)

which is attained for (here ..∗ denotes the complex-conjugate value)

amin =
γ0∑M

j=1 |γj|
·
(
. . .

γ∗j
|γj|

. . .

)
. (21)

Proof: From |∑ γj αj| ≤
∑ |γj| ·max |αj| , we have

max |αj| ≥
|∑ γj αj|∑ |γj| =

|γ0|∑ |γj| .
It is easily confirmed that equality is attained for amin from (21). 2

Example 5, continued: For an approximate zero z̃ ∈ Cs, s ≥ 1, of an empirical polynomial (p̄, e)
with empirical support J̃ , |J̃ | = M , we had obtained the (shifted) equivalent-data manifold

M(z̃) = {∆a ∈ A :
∑
j∈J̃

∆αj z̃
j + p̄(z̃) = 0} . (22)

Thus, by (20), the backward error of z̃ with the weighted norm (3) is

δ(z̃) := min
∆a∈M(z̃)

‖∆a‖∗e =
|p̄(z̃)|
‖ (z̃j) ‖e

= |p̄(z̃)|/
∑
j∈J̃

εj|z̃|j . 2 (23)

If the setM(z̃) is a linear manifold of a codimension > 1 or a nonlinear algebraic manifold,
the determination of the backward error is not so simple; but there exist well-known numerical
algorithms for solving the associated minimization problems (19). Also, we may generally
assume that the equivalent-data manifold of a reasonably computed approximate result passes
close by the origin and restrict our search to a domain about the origin. Finally, if we have

1The term “backward error” has been introduced by J. Wilkinson in his classical text of 1963. His idea to
interpret the deviation (or “error” in numerical analysis terminology) of an approximate result z̃ as the effect
of a deviation in the data of the original problem has become a central tool in numerical analysis and, more
generally, in applied mathematics.



located some point on M(z̃) with a norm distance ≤ 1 from the origin, we are finished: then
z̃ is a valid approximate result.

Example 6: For the empirical polynomial (14), s̃(x) = (x−
√

2)3 is an approximate divisor. To
determine the backward error δ(s̃) of s̃ as a divisor of (p̄, e), we note that the equivalent-data
manifold M(s̃) ⊂ A = C4 is the 1-dimensional linear manifold of the coefficients of p̃(x) =
(x − β) s̃(x) =: p(x, ā + ∆a(β)), i.e. (to 5 decimal digits) ∆α0 = 4.00694 − 2.82843β, ∆α1 =
−8.49019 + 6 β, ∆α2 = 5.99653− 4.24264β, ∆α3 = −1.41176 + β. Its minimal distance from
the origin is found as

δ(s̃) = min
β
‖∆a(β)‖∗e ≈ 555 ;

hence s̃ is not a valid approximate divisor of (p̄, e). 2

5 Iterative Refinement of Approximate Results

We consider task (ii) of the end of section 3: For a well-posed problem, we have an approximate
result z̃ ∈ Z with a backward error moderately larger than O(1); how may we correct it into
a valid approximate result? The most flexible scheme for that purpose is the method of local
linearization or Newton’s method which has been well-known and widely used for a long time,
particularly for the refinement of a solution of one equation in one variable. We address the
more general case of m equations in m results, with empirical data from a data space A.

Assume that our empirical problem may be formulated in terms of m equations:

G(x; a) = 0 , (24)

with a mapping G : Cm×CM → Cm so that the data→result mapping F is defined by

G(F (a); a) = 0 (25)

for all a in a sufficiently large neighborhood of the specified data ā. Assume that G is dif-
ferentiable w.r.t. to both arguments in that neighborhood. We want to determine ∆z such
that

0 = G(z̃ + ∆z, ā) = G(z̃, ā) +
∂G

∂x
(z̃, ā) ∆z + O(‖∆z‖2) . (26)

After the omission of the quadratic term in (26), we have a linear problem of the same nature
as our given problem. Its solution will not solve the left-hand equality in (26) exactly; but often
the resulting corrected result z̃ + ∆z will be a valid approximate result of (24) which is all we
want.

For a well-posed polynomial system of m equations in m variables, ∂G
∂x

is simply the Jacobian
matrix of the system and the Newton correction step (26) is also well-known. We illustrate the
formation of a Newton correction for a typical algebraic problem:

Example 7: Assume that we have found a poor approximate factor s̃(x) (monic of degree m)
for a given univariate empirical polynomial p(x) (monic of degree n) and we wish to correct it
into a valid approximate factor s̃(x) + ∆s(x). The associated correction step

p(x) = s̃(x) q(x) + r(x) = (s̃(x) + ∆s(x)) (q(x) + ∆q(x)) (27)



represents a system of n bilinear equations for the m coefficients of ∆s(x) and the n − m
coefficients of ∆q(x). The linearization of (27) is straightforward and generates the linear
system

∆s(x) q(x) + s̃(x) ∆q(x) = r(x) . (28)

Since we are only interested in ∆s, we can further simplify (28) by taking remainders modulo
s̃; this leaves ∆s and r (of degree m− 1) unchanged while we may have to form the remainder
of q mod s̃. We obtain

rem(∆s(x) rem q(x)) = r(x)

which is a linear system for the m coefficients of ∆s only. 2

6 Condition Estimates

The remaining task (iii) of section 3 asks for an estimate of the extension of a pseudoresult set
Zδ, δ = O(1): If equally valid pseudoresults z̃ can differ by O(10−r), it is meaningless or even
misleading to specify more than r decimal digits of a z̃. Since the variation of the values in
Zδ is the consequence of the variation of the data in Nδ, this is a classical case of a condition
estimate. We apply the following well-known result to the data→result mapping F of our
empirical problem:

Proposition 3: Let F : A → Z have a Lipschitz continuous Frechet derivative, with Lipschitz
constant L′, in some convex domain A ⊂ A; then, for a, a+ ∆a ∈ A,

F (a+ ∆a)− F (a) = F ′(a) ∆a+ r(a,∆a) with ‖r(a,∆a)‖ ≤ L′

2
(‖∆a‖∗)2 . (29)

Thus, in a reasonably regular situation with a moderate L′, the linear mapping F ′(a) de-
scribes the effect of small perturbations of the data well. In the following, we will always neglect
quadratic terms in ‖∆a‖∗ and assume

Zδ(ā, e) = {z̃ ∈ Z : z̃ = F (a) + F ′(a) (ã− ā) , ã ∈ Nδ(ā, e)} , (30)

which implies
diam Zδ(ā, e) = 2 δ |F ′(ā) e| ≤ 2 δ ‖F ′(ā)‖ ‖e‖∗ . (31)

A large diameter of Zδ(ā, e) may be due to only one stretched direction in the result space Z.
Therefore, it may be interesting also to look at the singular values of F ′(ā) which represent the
half axes of the ellipsoidal image of a Euclidean ball about ā under the linear map F ′(ā).

Generally, the Jacobian F ′ of the data→result mapping F is not explicitly available because
F is implicitly defined by a system of equations (24). Again we assume that G is differentiable
w.r.t. to both arguments in a suitable domain; then differentiation of (25) w.r.t. a yields, with
z̄ = F (ā),

∂G

∂x
(z̄, ā) · F ′(ā) +

∂G

∂a
(z̄, ā) = 0 , (32)

or

F ′(ā) = −
[
∂G

∂x
(z̄, ā)

]−1
∂G

∂a
(z̄, ā) . (33)



Example 8: For an isolated zero z of a univariate polynomial p we have G(x;α0, . . . , αn) =∑n
ν=0 ανx

ν and

F ′(ā) =
1

p′(z̄)
(1, z̄, . . . , z̄n) ;

by (31),

diam Z(ā, e) = 2 δ |F ′(ā) e| =
2 δ

|p′(z̄)|

n∑
ν=0

εν |z̄|ν =
2 δ

|p′(z̄)|
‖


1
z̄
...
z̄n

 ‖e (34)

Due to the occurrence of p′ in the denominator, this estimate is not applicable for “zero clusters”,
i.e. pseudozero domains which contain more than one zero of each p̃ ∈ Nδ(p̄, e). 2

7 Zero Clusters

In Example 2, we had observed that, for an empirical polynomial, the zeros in an m-cluster have
no individuality in the following sense: If we mark a certain simple zero of p(x, ā) in Zδ(ā, e)
and then vary the coefficients of p(x, ã) continuously over Nδ(ā, e), we cannot follow that zero
in a unique fashion: There occurs at least one confluence of zeros in this process. It may even
happen that there exists an ã ∈ Nδ(ā, e) where p(x, ã) has an m-fold zero in Zδ(ā, e). When we
consider a cluster of m zeros as one m-dimensional result quantity, then we find that not each
m-tuple of points in Zδ(ā, e) can appear as an m-tuple of exact zeros of some p(x, ã). Thus, by
Definition 6, our problem is ill-posed.

The appropriate tool for the description of an m-cluster is the monic polynomial s(x, c)
of degree m which vanishes at the zeros of the cluster; cf. [1]. The coefficients of s depend
Lipschitz continuously and smoothly on the coefficients of p, due to the following result (cf.[4],
Theorem 7):

Proposition 4: Let
p(x, a) = q(x, b) · s(x, c) , (35)

with monic p, q, s of degrees n, n − m, m resp., with s and q coprime. Then there exists an
n×m-matrix C such that p(x, a+ ∆a) = q(x, b+ ∆b) · s(x, c+ ∆c) implies

( . . .∆cT . . . ) = ( . . .∆aT . . . ) · C + O(‖∆a‖2) , i.e. C =

(
dc

da

)
a

. (36)

Remark: The coprimality of s and q requires that s contains all its zeros with their full
multiplicity. C has a moderate norm if the zeros represented by s are well separated from the
remaining zeros of p. 2

Proposition 4 implies that the computation of the coefficients of the “cluster polynomial”
s is a well-posed problem so that we can apply all concepts and algorithms of the previous
sections to it. It also has the important practical consequence that the moments of the zeros
in a cluster depend Lipschitz continuously and smoothly on the coefficients of p because, by
Vieta’s Theorem, the coefficients of s are the fundamental symmetric functions of the cluster
zeros, and the moments of a set of m points zµ ∈ C may be expressed as polynomials in their
fundamental symmetric functions. For the arithmetic mean of the cluster zeros, this result



has been known for some time. Our approach shows that all moments of the m cluster zeros
vary only linearly with a small change of the coefficients of p. This suggests that – for an
empirical polynomial – the moments of the zeros of a cluster should be computed and specified
rather than the locations of the individual zeros. These moments lie in pseudoresult sets whose
approximate diameters can be estimated from (36).

Example 9: In Example 6, we have found that s̃(x) = (x −
√

2)3 is not a valid approximate
cluster polynomial for the 3-cluster of the empirical polynomial (14) about

√
2; therefore we

perform one Newton correction step as described in Example 7 which yields, from a 3×3 linear
system, ∆s(x) ≈ − .00491 + .00694x− .00246x2. The refined cluster polynomial

s̃new(x) = s̃(x) + ∆s(x) ≈ x3 − 4.24510x2 + 6.00694x− 2.83334 ,

with δ(s̃new) < .5, is a valid approximate description of the 3-cluster of our empirical polynomial.

On the other hand, from the columns of C (cf. (36)), one finds that the pseudoresult sets
for the coefficients γ0, γ1, γ2 of s have diameters of ≈ (2.3, 3.6, 2.1) × 10−5. This displays the
well-conditioned character of the determination of the cluster polynomial and shows that it is
meaningful to specify it to 5 digits, with our tolerance level of p. This well-conditioning carries
over to the determination of the moments of the cluster zeros from the cµ. E.g., the arithmetic
mean of the 3 cluster zeros (=the first moment) varies only by ≈ 7× 10−6 within the tolerance
neighborhood of p while the zeros can vary by up to 6× 10−2 ! 2

8 Overdetermined Problems

In the previous section, we have been able to deal with an ill-posed empirical problem by a
change of the requested results. Now we consider ill-posed problems of the kind described as
type 1) after Definition 6. These are overdetermined problems which can have (non-trivial)
solutions only for data satisfying certain relations, i.e. data which lie on a manifold S in the
data space A. Typical polynomial problems of this kind are greatest common divisors (cf.
Example 3) and the factorization of multivariate polynomials. In this section, we use this last
problem to exemplify our approach.

Consider an s-variate polynomial (7) of total degree k. A factorization of p into two factors
u of total degree l and v of total degree k− l ≥ l can exist only if the overdetermined system of
equations for the coefficients βj of u and γj of v resulting from a comparison of coefficients in

p(x; a) :=
∑
j∈J

αj x
j = (

∑
|j|≤l

βj x
j) (

∑
|j|≤k−l

γj x
j) (37)

has at least one solution. This is a very restrictive requirement because the number of coeffi-
cients grows exponentially with the total degree for s > 1. (E.g., for s = 3, k = 5, l = 2, there
are 56 equations for the 30 coefficients of u and v.) However, if the real-world phenomenon
which has been modelled by the empirical polynomial (p̄, e) is decomposible, there should exist
some factorizable polynomials p̃ ∈ Nδ(p̄, e), with δ = O(1), and we should be able to find
pseudofactors of (p̄, e), i.e. exact factors of such a p̃.

Obviously, we may normalize one coefficient in each of the 3 polynomials in (37). If p
possesses a nonvanishing constant term α0, it appears convenient to require

α0 = β0 = γ0 = 1 ; (38)



this is also impartial with respect to the variables. If |α0| = 0 or very small, (38) cannot be
used; but we will not consider the necessary adaptations in this lecture. As in section 2, we do
not require that all coefficients (ᾱj, εj) of (p̄, e) have a positive tolerance εj.

The task of finding a pseudofactorization of a multivariate polynomial has two parts (cf.
[3]):

(i) the determination of approximate candidate factors (global analysis);

(ii) the checking and refinement of such factors (local improvement).

In phase (i), one may project the overdetermined system (37) onto a subspace of fewer
variables: If it cannot be (nearly) satisfied there, no (pseudo)solution for (37) exists; on the
other hand, if there exists such a solution, one may be able to extend the subspace solution
into a candidate solution for the full system (37). Therefore, we select two variables (call them
x, y here) and form the univariate (approximate) factorization

p(x, 0, 0..0; ā) ≈
k∏

κ=1

(1 + β10,κx) , β10,κ ∈ C , (39)

with β10,κ = −1/ξκ, where the ξκ 6= 0 (cf. (38)) are the k approximate zeros of p(x, 0, 0..0; ā).
For each factor combination in (39), we compute a unique extension of the univariate “germ”
into a bivariate polynomial compatible with p. When we set x = 0 there, the remaining
univariate germ in y should be a pseudofactor of p(0, y, 0..0; ā). (For this extension procedure,
we must refer to [3].)

Iff one of the germs from (39) passes this test, we extend it further into two full s-variate
factors u, v. For this process, we select relations in (37) which permit the computation of
further coefficients for u and v from nonsingular linear equations; all the remaining equations
in the overdetermined system (37) are simply disregarded. This brutal approach is reasonable:
If the polynomial (p̄, e) is pseudo-factorizable and if we have chosen a suitable germ towards
this factorization, then the coefficients which satisfy a subset of the equations in (37) must
automatically satisfy the remaining equations approximately! If this hypothesis does not hold,
it will be discovered in phase (ii). Again, we must refer to [3] for the technical details.

In phase (ii), we compute the backward errors of our candidate pair u, v with respect to
those equations in (37) which have been disregarded in phase (i): If they are all of O(1), we
have found a valid approximate factorization of the empirical polynomial (p̄, e). Otherwise, we
turn to the refinement stage – except if some backward errors are so large that we choose to
discard the candidate pair.

For the correction of a promising candidate pair with coefficients b0, c0, we generalize our
Newton approach of section 5: We linearize the complete system (37) about b0, c0 which yields
a linear overdetermined system in the correction coefficients ∆b,∆c. Since each equation of
that system represents the deviation from an individual coefficient of the specified polynomial
p̄ to be factored and since we measure these deviations in the weighted max-norm ‖..‖∗e of (9),
we determine the minimal residual norm solution of the linearized system with respect to this
norm rather than a least-squares solution; this amounts to solving a standard linear program.
The occurrence of tolerances εj = 0 for intrinsic coefficients of p formally leads to equality
conditions. Instead, we rather introduce suitably chosen tiny εj > 0 for these j; we have found
that this makes the solution algorithm for the minimization problem more stable. Due to the
fact that we have linearized our problem for the correction step, we have to reevaluate the
residuals for the nonlinear system (37) and repeat the refinement if necessary.



9 Conclusions

It is a severe shortcoming of present computer algebra software systems that they cannot
deal properly with data of limited accuracy in algebraic computations; such data occur in
almost all scientific computations arising from real-life problems. In this lecture, we have
sketched a conceptual framework for an appropriate and consistent treatment of empirical
algebraic problems; some of these concepts have reached wide acceptance in the computational
algebra community while others are only beginning to become known. The whole approach
is in agreement with standard concepts and procedures in Numerical Analysis; it attempts to
close the gap between Computer Algebra and Numerical Analysis which still exists.

These concepts permit the design of algorithms which solve many empirical algebraic prob-
lems correctly and efficiently. The set of these problems not only encompasses standard prob-
lems, like systems of polynomial equations, but also extends to problems which have appeared
intractable for data with limited accuracy, like multivariate factorization and many others. It
is the accessibility of such problems which poses a major mathematical challenge for numerical
polynomial algebra.

It is evident that a user-friendly implementation of algorithms for numerical polynomial al-
gebra in wide-scope software systems for Scientific Computing – like, e.g., Maple, Mathematica,
Matlab – will enhance the use of these systems for a large number of applied scientists from
the most diverse areas. It will also pave the way towards a more extended use of nonlinearity
in the modelling of real-life phenomena and thus towards more reliability in the prediction and
control of these phenomena.
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