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Abstract It is illustrated how to use an eÆcient inequality-proving program to solve global

optimization problems whereof the objective function and the constraints all are polynomials.

Some examples are as benchmarks taken from relevant literature.

1. Inequalities with radicals

It was introduced a practical algorithm and accordingly a generic program BOT-

TEMA for automated reasoning on inequalities. A sketch about the algorithm can be
found in [12, 13, 14], and a more detail exposition (for that may also see [17] which is
aimed at geometric inequalities) will be given here in the next section.

The main purpose of this article is to demonstrate how to apply our algorithm and
program to a class of problems for global optimization. The basic strategy we take is to
convert the optimal value �nding to �nitely many inequality verifying. The argument
based on a very simple fact: if f � b is true but f � a is false, then a � fmax � b is
true where fmax stands for the greatest value of f .

Let us begin with an inequality proposition.

Proposition 1. The following inequality holds,
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To verify this proposition, we may employ a decomposition algorithm such as cylin-
drical algebraic decomposition [3, 4]. The basic idea is: decompose the space of para-
meters x1; � � � ; x5 into a �nite number of parts, i.e. some cells with di�erent dimensions,
pick out all the parts where the hypothesis of the proposition holds, and then check
whether the conclusion x1x2x3x4x5 � 3 holds over the parts picked out. If so, Propo-
sition 1 is true; otherwise, it is false.
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We need deal with a problem of 5-dimensional space if we do not take any dimension-
decreasing measure. Generally speaking, it would be impossible to implement a non-
trivial algebraic decomposition for a 5-dimensional space by means of the current com-
puter softwares and hardwares. In fact, it was said that such a decomposition is very
diÆcult even for spaces of dimensions more than 3. So, we had better take some
measures to keep the dimension as low as possible.

Noting that the hypothesis includes 3 equations, we thus eliminate 3 variables
(x1; x4; x5) by solving equation system (2-4) and convert Proposition 1 to a form
encoded in x2; x3.

Proposition 2. The following inequality holds,
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In comparison with Proposition 1, the number of variables reduces to 2, but some
radicals occur in both hypothesis and conclusion. To eliminate these radicals, the
conventional means is to introduce new variables, that way the problem returns to 5-
dimensional again. So, we had better employ an eÆcient algorithm not only eliminating
the radicals but also keeping the dimensions non-increasing. It is what the dimension-
decreasing algorithm does.

we proved Proposition 2 (hence Proposition 1) using program BOTTEMA on a
Pentium 3/450 with time about 6 seconds. One more example seems simpler than
Proposition 1 but it took us more time.

Proposition 3. The following inequality holds,

2455

100
x1 +

2675

100
x2 + 39 x3 +

405

10
x4 � 30; (13)

provided x1 + x2 + x3 + x4 = 1; (14)

0 < x1 � 1; 0 < x2 � 1; 0 < x3 � 1; 0 < x4 � 1; (15)
23

10
x1 +

56

10
x2 +

111

10
x3 +

13

10
x4 � 5; (16)

12 x1 +
119

10
x2 +

418

10
x3 +

521

10
x4 � 21

�
1645

1000

s
28

100
x21 +

19

100
x22 +

205

10
x23 +

62

100
x24 � 0: (17)



The hypothesis includes one equation, so we eliminate x4 by solving equation (14)
and convert Proposition 3 to a form encoded in x1; x2; x3.

Proposition 4. The following inequality holds,
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This proposition is false. We disproved it (hence Proposition 3) on the same machine
with time 68 seconds.

Automated theorem proving on inequalities is always considered as a diÆcult topic
in the area of automated reasoning. The relevant algorithms depend fundamentally
on real algebra and real geometry, and the computational complexity increases very
quickly with the dimension, that is, the number of parameters. Some well-known
algorithms are complete theoretically but ineÆcient in practice, which cannot verify
non-trivial propositions in batches. For progress made in this aspect recent years, see
[5, 6, 1, 2, 10, 11, 15, 16].

2. Dimension-Decreasing Algorithm

Before we describe the so-called dimension-decreasing algorithm, some de�nitions
should be introduced and illustrated.

De�nition 1. Assume l(x; y; z; � � �) and r(x; y; z; � � �) are continuous algebraic func-
tions of x; y; z; � � �. We call

l(x; y; z; � � �) � r(x; y; z; � � �) or l(x; y; z; � � �) < r(x; y; z; � � �)

an algebraic inequality in x; y; z � � �, and l(x; y; z; � � �) = r(x; y; z; � � �) an algebraic equal-
ity in x; y; z; � � �.

De�nition 2. Assume � is an algebraic inequality (or equality) in x; y; z; � � � .
L(T ) is called a left polynomial of �, provided

� L(T ) is a polynomial in T , its coeÆcients are polynomials in x; y; z; � � � with
rational coeÆcients.

� The left hand side of � is a zero of L(T ).

The additional item following is unnecessary for this de�nition, but it would be helpful
to reducing the computational complexity in the process later.



� Amongst all the polynomials satisfying the two items above, L(T ) is what has
the lowest degree in T .

The right polynomial of �, namely, R(T ), can be de�ned analogously.

De�nition 3. Assume � is an algebraic inequality (or equality) in x; y; � � � etc.,
L(T ) and R(T ) are the left and right polynomials of �, respectively. By P (x; y; � � �)
denote the resultant of L(T ) and R(T ) with respect to T , and call it the critical
polynomial of �, and the surface de�ned by P (x; y; � � �) = 0 the critical surface of �,
respectively.

For example, let us go to compute the left, right and critical polynomials of in-
equality (12), i.e.

q
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We �rst set auxiliary variables,

y1 = (x32 + 1)
1

3 ;
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q
250� 25 y21 � 25 x22 � 25 x23 + 10 x2x3;

y3 =
q
250� 25 y21 � 25 x22 � 25 x23 + 10 x2x3;

and rationalize these radical equalities to obtain polynomial equations, namely, f1 =
0; f2 = 0; f3 = 0; where
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Then, eliminate y1; y2; y3 from y2 + y3 � T successively by resultant computation: Let

�2 = resultant(y2 + y3 � T; f3; y3);

�1 = resultant(�2; f2; y2);

�0 = resultant(�1; f1; y1):

Obviously, �0 is a left polynomial of (12). Print it in detail:
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It is trivial to �nd a right polynomial for this inequality because the right hand side
contains no radicals. We simply take T � 32. Computing the resultant of the left and
right polynomials with respect to T , we have the critical polynomial,
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A proposition which our algorithm is applicable to should take the following form:

�1 ^ �2 ^ � � � ^ �s ) �0;

where �0; �1; � � � ; �s are algebraic inequalities in x; y; z; � � � etc., the hypothesis �1 ^

�2 ^ � � � ^�s de�nes either an open set2 or an open set with whole/partial boundary.

We take the following procedures when the conclusion �0 is of type �. (As for
�0 of type <, what we need do in additional is to verify if the equation l0(x; y; � � �)�
r0(x; y; � � �) = 0 has no real solutions under the hypothesis, where l0(x; y; � � �) and
r0(x; y; � � �) denote the left and right hand sides of �0, respectively.)

1. Find the critical surfaces of the inequalities �0; �1; � � � ; �s.
2. These critical surfaces decompose the parametric space into a �nite number of

cells. Among them we just take all the connected open sets, D1; D2; � � � ; Dk, and discard
the lower dimensional cells. Choose at least one test point in every connected open
set, say, (x� ; y�; � � �) 2 D� ; � = 0; 1; : : : ; k. This step can be done by an incomplete
cylindrical algebraic decomposition which is much easier than the complete one since
all the lower dimensional cells were discarded. Furthermore, we can make every test
point a rational point because it is chosen in an open set.

3. We need only check the proposition for such a �nite number of test points,
(x1; y1; � � �), � � �, (xk; yk; � � �). The statement is true if and only if it holds over these
test values.

The proof of the correctness of the method is sketched as follows.
By l�(x; y; � � �); r�(x; y; � � �) and P�(x; y; � � �) = 0 denote the left, right hand sides

and critical surface of ��, respectively, and

Æ�(x; y; � � �)
def
= l�(x; y; � � �)� r�(x; y; � � �);

for � = 0; : : : ; s.
The set of real zeros of all the Æ�(x; y; � � �) is a closed set, so its complementary set,

say �, is an open set. On other hand, the set

D
def
= D1 [ � � � [Dk

2may be disconnected



is exactly the complementary set of real zeros of all the P�(x; y; � � �).

We have D � � since any zero of Æ�(x; y; � � �) must be a zero of P�(x; y; � � �). By
�1; � � � ;�t denote all the connected components of �, so each one is a connected open
set. Every �� must contain a point of D for an open set cannot be �lled with the
real zeros of all the P�(x; y; � � �). Assume �� contains a point of Di, some connected
component ofD. Then, Di � �� because it is impossible that two di�erent components
of � both intersect Di. By step 2, Di contains a test point (xi; yi; � � �). So, every ��

contains at least one test point obtained from step 2.
Thus, Æ�(x; y; � � �) keeps the same sign over �� as that of Æ�(xi� ; yi�; � � �) where

(xi�; yi� � � �) is a test point in ��, for � = 1; : : : ; t; � = 0; : : : ; s. Otherwise, if there is
some point (x0; y0; � � �) 2 �� that Æ�(x

0; y0; � � �) has the opposite sign to Æ�(xi�; yi�; � � �),
connecting two points (x0; y0; � � �) and (xi�; yi�; � � �) with a path � such that � � ��,
then there is a point (�x; �y; � � �) 2 � such that Æ�(�x; �y; � � �) = 0, a contradiction!

By A[B denote the set de�ned by the hypothesis, where A is an open set de�ned
by

(Æ1(x; y; � � �) < 0) ^ � � � ^ (Æs(x; y; � � �) < 0);

that cosists of a number of connected components of � and some real zeros of Æ0(x; y; � � �),
namely A = Q [ S where Q = �1 [ � � � [ �j and S is a set of some real zeros of
Æ0(x; y; � � �). And B is the whole or partial boundary of A, that consists of some real
zeros of Æ�(x; y; � � �) for � = 1; : : : ; s.

Now, let us verify whether Æ0 < 0 holds for all the test points in A, one by one. If
there is a test point whereat Æ0 > 0, then the proposition is false. Otherwise, Æ0 < 0
holds over Q because every connected component of Q contains a test point and Æ0
keeps the same sign over each component ��, hence Æ0 � 0 holds over A by continuity,
so it also holds over A [ B, i.e., the proposition is true.

3. Finding Optimal Value

Now let us review Section 1, the Proposition 1 concerns one of the benchmarks
from [8], see also [9], h81.mth. We replace the oats with rationals and formulate it as
follows:

Problem 1. Find the greatest value of x1x2x3x4x5, subject to
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5
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x1 > 0; x2 > 0; x3 > 0; x4 > 0; x5 > 0;
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23
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32
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; x5 �

32

10
:

Eliminate (x1; x4; x5) by solving the 3 equations and convert Problem 1 to the form
encoded in x2; x3 as follows.



Problem 1a. Find the greatest value of the function

f(x2; x3) =
1

5
(x3

2
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1

3x2
2
x2
3
;

provided
x2 > 0; x3 > 0;

x3
2
+ 1 �
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;

x3 �
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10
;

10� (x3
2
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3 � x2
2
� x2

3
�

2

5
x2x3 � 0;q

250� 25 (x32 + 1)
2

3 � 25 x22 � 25 x23 + 10 x2x3

+
q
250� 25 (x32 + 1)

2

3 � 25 x22 � 25 x23 � 10 x2x3 � 32:

We may apply a naive algorithm to the problem by using BOTTEMA repeatedly
to decide a series of inequalities to be true or false. At �rst it is easy to see that
0 < fmax < 32: We then use a dichotomous search to �nd fmax approximately.

Check the inequality f(x2; x3) � 16; true,

so then check f(x2; x3) � 8; true,

so then check f(x2; x3) � 4; true,

so then check f(x2; x3) � 2; false,

so then check f(x2; x3) � 3; true,

so then check f(x2; x3) �
5

2
; false,

so then check f(x2; x3) �
11

4
; false,

� � � � � � � � �

so then check f(x2; x3) �
95673

32768
; true,

so then check f(x2; x3) �
191345

65536
; false,

so then check f(x2; x3) �
382691

131072
; true,

so, after proving/disproving 22 inequalities of the same type, we have

191345

65536
< fmax <

382691

131072
;

that is,
fmin = 2:919700 � � �

with error less than 10�5. This is accurate enough for general purpose. We �nished
the job on a Pentium 3/450 using time about 200 seconds. It would be concluded from
above example that the speed in automated theorem proving is also of importance. On
other hand, a parallel process is de�nitely applicable to such a procedure.



The Proposition 3 concerns another benchmark from [8], see also [9], h73.mth. We
replace the oats with rationals and formulate it as follows:

Problem 2. Find the least value of

2455
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2675

100
x2 + 39 x3 +

405

10
x4;

subject to
x1 + x2 + x3 + x4 = 1;

0 < x1 � 1; 0 < x2 � 1; 0 < x3 � 1; 0 < x4 � 1;
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100
x24 � 0:

Eliminate x4 and convert Problem 2 to the form encoded in x2; x3 as follows.

Problem 2a. Find the least value of the function

g(x1; x2; x3) = �
319

20
x1 �

55

4
x2 �

3

2
x3 +

81

2
;

subject to
x1 > 0; x2 > 0; x3 > 0;

x1 + x2 + x3 � 1;

10 x1 + 43 x2 + 98 x3 � 37;

401 x1 + 402 x2 + 103 x3 +
329

200
(90 x2

1
+ 81 x2

2
+ 2112 x2

3

+62� 124 (x1 + x2 + x3 � x1x2 � x2x3 � x1x3))
1

2 � 311:

It is easy to see 9 < gmin < 41. By the same procedure as that for Problem 1a, after
proving/disproving 22 inequalities of the same type, we have

3918315

131072
< gmin <

979579

32768
;

that is,
gmin = 29:89437 � � � ;

with error less than 10�5.

4. A Complete Algorithm for Global Optimization

The method described in last section is suÆcient for �nding the optimal value of
a polynomial function under polynomial constraints, but it does not completely solve
the problem of global optimization because that procedure cannot give the critical



point(s) whereat the optimal value is achieved. In this section we introduce a symbolic-
numerical algorithm which completely solves the problems of this kind.

For convenience, any �nite set of real numbers which contains all local minima and
maxima is called a �nite kernel which contains more points than that in original sense
de�ned by Wu Wen-ts�un [10, 11].

Let us illustrate the algorithm with the following example which is taken from a
well-known book [7] on mathematical economics.

Problem 3. Find the least value of the function

f(x; y) =
q
x2 + y4 + 1=x+ xy + 1=y3

subject to x > 0; y > 0:

Step 1. Let T stand for the objective function f(x; y), i.e.

q
x2 + y4 + 1=x+ xy + 1=y3 � T = 0:

Rationalize it, i.e. replace the left hand side with the left polynomial,

T 2x2y6�2xy3(y3+x2y4+x)T�x4y6�x2y10+y6+2 y7x2+2xy3+x2+x4y8+2x3y4 = 0: (23)

Compute the derivative of (23) with respect to x,

T 2xy6 � y3(3x2y4 +2x+ y3)T � xy10 +2xy7 + y3 � 2x3y6 +2x3 y8 +3x2y4 + x = 0: (24)

Critical values of T satisfy both (23) and (24), wherefrom we eliminate x,

y18 T 6 � 6 y15 T 5 + y12 (y12 � 3 y10 � 10 y7 + y2 + 15)T 4

� 4 y9 (y12 � 3 y10 � 10 y7 + y2 + 5)T 3 � y6(�15 + 18 y10 + 14 y12 + 8 y9

+ 2 y22 � 3 y20 � 32 y14 + 8 y19 + 60 y7 � 6 y2 � 2 y17)T 2 + 2y3(�3 + 20 y7

+ 6 y10 + 18 y12 � 32 y14 + 8 y19 � 3 y20 + 2 y22 � 2 y17 + 8 y9 � 2 y2)T + 1

� 8 y24 � 10 y22 + 24 y19 + 16 y14 � 19 y12 + 3 y20 � 3 y10 + 2 y17 + y2

+ 8 y27 � 10 y7 � y30 + y32 � 8 y29 � 32 y21 + 16 y16 � 8 y9 + 16 y26 = 0: (25)

Also compute the derivative of (25) with respect to y,

9 y16 T 6 � 45 y13 T 5 + y10 (�33 y10 + 90 + 7 y2 + 12 y12 � 95 y7)T 4

� 2 y7 (21 y12 + 11 y2 � 57 y10 + 45� 160 y7)T 3 � y4(126 y12 + 60 y9

� 24 y2 + 144 y10 + 390 y7 + 28 y22 � 320 y14 � 39 y20 � 45 � 23 y17

+ 100 y19)T 2 + y(200 y7 � 9 + 96 y9 � 69 y20 + 50 y22 + 270 y12 � 10 y2

+ 78 y10 + 176 y19 � 40 y17 � 544 y14)T + 1 + 128 y14 � 35 y5 � 116 y27

+ 112 y12 + 30 y18 � 15 y8 � 114 y10 � 36 y7 + 17 y15 + 16 y30 + 108 y25

+ 208 y24 � 336 y19 � 96 y22 � 15 y28 + 228 y17 � 110 y20 = 0: (26)



Analogously, eliminate y from (25) and (26), we have

(1048576T 30 + 515899392T 26 � 1409286144T 25 + 2540961792T 24 � � � �

+ 4964564163953479) (72301961339136T 34 � 92137890375936 T 32

� 58912709239296T 31 � 4671310780013760T 30 + 195813679474944 T 29

+ � � �+ 540322384839454862827764 T 2 + 5879815699053342397915152 T

� 785335601673232833886399) (64 T 8 � 64T 3 + 48T 2 � 12T + 1) = 0: (27)

The least value we want must be a positive root of (27), i.e., belongs to the �nite
kernel3

K = f 0:13455 � � � ; 0:28526 � � � ; 0:79816 � � � ; 1:15159 � � � ; 4:31535 � � � g: (28)

The time spent for this step on a Pentium/350 is about 10 seconds.

What we want may not be 0:13455 � � �, the least member ofK, because the equation
f(x; y) = 0:13455 � � � may not have a positive solution. So, we have to go on.

Step 2. In general, sort the members of K, the �nite kernel received from Step 1,

T1 < T2 < � � � < Ts (s = 5 in this example)

and separate them with rational numbers R1; � � � ; Rs as follows,

R1 < T1 < R2 < T2 < � � � < Rs < Ts:

In this example, we may let

R1 =
1

8
; R2 =

1

4
; R3 =

1

2
; R4 = 1; R5 = 2:

The following fact is then obvious:

Let k be the greatest natural number such that f > Rk, then, fmin = Tk. If f > R1

does not hold, then the least value of f does not exist.

One thus can convert the least-value-�nding problem to veri�cation of �nitely many
inequalities, f > Ri. By means of a dichotomous search, the number of inequalities
need to be veri�ed is not greater than log2 s + 1 which is much less than that in the
naive method shown in last section. To this example we need check 3 inequalities only.
By applying BOTTEMA, the total time spent on a Pentium/350 is about 4 seconds.
Because f > 2, we have

fmin = 4:315351625 � � �

which is the greatest real root of a polynomial equation of degree 34:

72301961339136 T 34 � 92137890375936 T 32 � 58912709239296T 31

� 4671310780013760 T 30 + 195813679474944T 29 + 5685782870701575T 28

� � � �

� 7700985143708431104131730 T 3 + 540322384839454862827764T 2

+ 5879815699053342397915152 T � 785335601673232833886399 = 0: (29)

3Here the constraints de�ne an open set, otherwise, we should consider critical values on the
boundary.



Setp 3. If we want also to �nd the critical point(s) corresponding to fmin, i.e. the
positive solution(s) ofq

x2 + y4 + 1=x+ xy + 1=y3 = 4:315351625 � � � ;

the equations (29); (25); (23) form a triangular system which is quite easy to be solved.

5. Conclusion

Based on an inequality-proving program, BOTTEMA, We presented here two
symbolic-numerical algorithms about global optimization. The former is only for �nd-
ing the optimal-value, the latter can also give the critical point(s) whereat the optimal
value is achieved. The eÆciency of both algorithms essentially depend on that of the
inequality-proving program.
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