
Intelligent Dynamic Geometry Software�

I. Automated Geometric Diagram Generation

Xiao-Shan Gao, Wei-Qiang Yang and Lei-Dong Huang

Institute of Systems Science, Academia Sinica, Beijing 100080

E-mail: xgao@mmrc.iss.ac.cn

Abstract

Most dynamic geometry software uses construction sequences with ruler and compass

as input. But, geometry diagrams in geometry textbooks are usually described declara-

tively, and the procedure of converting such a description to constructive form is usually

done by the user. Our new software is trying to mechanize this tedious and sometimes d-

iÆcult procedure, and is capable of drawing geometry diagrams automatically. The result

is an intelligent dynamic geometry software which can be used to input and manipulate

geometric diagrams more easily.

1 Introduction

With the invention of dynamic geometry software, noticeably, Gabri [10] and Geometer's S-

ketchpad [9], successful experiments have been done on using dynamic geometry software to

education [2, 3, 4, 11, 12]. As compared with models built with real materials, visual models

built with dynamic geometry software are more exible, powerful, and more open for manipu-

lation. These software represent a major step forward in modernizing the teaching of geometry

in middle and high schools.

In [5], an automated reasoning software Geometry Expert (GEX) [7] is used to build dynamic

logic models. Precisely speaking, with GEX we can prove and discover geometry theorems auto-

matically. Logic models can be used for more intelligent educational tasks, such as automated

generation of test problems, automated evaluation of students' answers, intelligent tutoring,

etc.

In this paper, we will give a brief introduction to a new piece of software developed by

us, which is capable of drawing geometry diagrams automatically. Previous dynamic geometry

software uses construction sequences with ruler and compass as input. Most geometry diagrams

�This work was supported in part by an Outstanding Youth Grant (No. 69725002) from the Chinese NSF

and by a National Key Basic Research Project (NO. G1998030600).



in geometry textbooks are described declaratively, and the task of converting such a description

to constructive form is usually done by human. This makes the use of these methods cumber-

some. For some diagrams, to �nd a constructive solution is quite diÆcult and many techniques

were developed for ruler and compass construction since the time of ancient Greek. This new

software is trying to mechanize some of the techniques of ruler and compass construction and

to provide a new generation of dynamic geometry software, which can be used to input and

manipulate diagrams more easily.

We apply theories of automated diagram construction to develop a piece of intelligent dy-

namic geometry software. This software accepts declarative description of geometry diagrams

as input and draw the diagrams automatically. As a result, the software is much easy to use

and still has all the elegant properties of the usual dynamic geometry software.

Using this software, we may generate about 80 percent of the 512 diagrams in [1]. Since

the geometry theorems in [1] are described constructively, our software may provide a better

interface for the geometry prover reported in [1].

2 Methods of Automated Geometric Diagram Construc-

tion

Let us say that we want to draw a parallelogram ABCD, i.e., a quadrilateral ABCD such that

AB k CD and AD k BC(Figure 1). In most dynamic geometry software, the drawing process

is using the following construction sequence:

A B

CD

Figure 1: Drawing a Parallelogram

Take free points A;B;C.

Connect line segments AB and BC.

Draw a line l1 which passes through C and parallel to AB.

Draw a line l2 which passes through A and parallel to BC.

Take the intersection D of lines l1 and l2.

Connect line segments AD and CD.

We want to design a piece of software which can accept a declarative description of this

diagram:

Take free points A;B;C;D.

Connect line segments AB, BC, AD and CD.

Add constraints AB k CD and AD k BC.



Note that in the declarative description, we do not mention how to draw the diagram. The

software will generate a construction sequence from this description and draw the diagram

automatically. This function is called automated geometric diagram construction.

In what below, we will give a formal de�nition for the two ways of drawing diagrams. A

construction sequence with ruler and compass for a diagram is a list of geometric objects in the

diagram as follows:

O1; O2; � � � ; Om

such that each Oi is introduced by the following basic constructions using objects already drawn

O1; � � � ; Oi�1.

Generally, a construction sequence is made up of the following sorts of constructions, which

are used to introduce new geometric objects.

1. POINT(O): takes a free object O in the plane.

2. ON(O, t): takes a semi-free object O on t, where t could be a point, a line or a circle.

3. We also need the de�nitions for all geometric objects. For instance, LINE(O1; O2) is the

line passing through point O1 and O2. CIR(O; d) is the circle with point O as the center

and d as the radius.

4. INTER(O;O1; O2; � � � ; Ok): O is the intersection of O1; O2; � � � ; Ok(k � 2); details about

the INTER construction can be found in the next section.

A declarative description of a diagram consists of two parts (OS;CS):

OS is the Geometric Objects including points, lines and circles.

CS is the Geometric Constraints which are given in the following table

Table 1. Geometric Constraint Relationships

point line circle

point distance coincidence/distance coincidence

line coincidence/distance parallel/angle tangent

circle coincidence tangent tangent

Remark We use DIS, ON and TANG to represent distance, coincidence and tangent con-

straints. There are three more often used constraints: jABj = jPQj, 6 (ABC) = 6 (PQR), and

midpoint(M;A;B).

Algorithm 2.1 The algorithm takes a declarative description of a geometric diagram (OS;CS)

as input and generates a construction sequence CT for it if possible.



For each object Q, let DEG(Q) be the number of constraints involving Q, and DOF(Q) the

number of conditions needed to determine Q. For instance, for a point or a line, its DOF is

two, while for a circle its DOF is three.

1. Let CT = ;. For each object in OS, we assign a FLAG to it and the initial value of the

FLAG is zero.

2. For all objects Q satisfying DEG(Q) � DOF(Q), if the algorithm CONS(Q) returns a

construction C, then add C to CT , add Q to the end of an ordered list l, and set the

FLAG part of them to one. If l is empty, the algorithm terminates without �nding a

result.

3. Starting from the beginning to the end, for each R in l do the following: for each U 2
OS, if such that there exists a constraint between R and U , DEG(U) � DOF(U) and

FLAG(U) = 0, and CONS(U) (see Algorithm 2.2) returns a construction C, then add C

to CT , add U to the end of l, and set FLAG(U) to one.

4. If all objects in OS are added to l, then we �nd a construction sequence CT for the

diagram. Otherwise, the algorithm fails.

This method works for simple diagrams only. If a diagram can be drawn with the above

algorithm, we call it a diagram without loops. For algorithms to deal with diagrams with loops,

please consult [8, 13, 6].

Algorithm 2.2 (CONS(O)) The algorithm takes a geometric object O and the constraint set

CS involving O as input and generates a construction for O.

For convenience, we use the following representations for point Pi, line li, and circle Oi: Pi =

(xi; yi), where, xi; yi represent two variables; li = (ai; bi; ci), the relation equation is aix+ biy+

ci = 0; Oi = (xi; yi; ri), where, the circle has center point (xi; yi) and radius ri, so the relation

equation is (x� xi)
2 + (y � yi)

2 = r2
i
.

So, the algorithm can be described as follows. Due to the limit on the length of the paper,

we will omit the details for some of the cases.

CASE 1: O(x; y) is a point (DOF=2). The constraint set could be:

1. CS = fP0g: the distance of d0 between O and P0 is given. O is a semi-free point.

Return On(O;CIR(P0; d0)). So, x and y satisfy:

(x� x0)
2 + (y � y0)

2 = d20: (1)

2. CS = fl0g: O is on the line l0. O is a semi-free point.

Return On(O; l0). So, x and y satisfy:

a0x + b0y + c0 = 0: (2)



3. CS = fO0g: O is on the circle O0. O is a semi-free point.

Return On(O;O0). So, x and y satisfy:

(x� x0)
2 + (y � y0)

2 = r20: (3)

4. CS = fP1; P2g: d1; d2 are given as the distances between O and P1; P2. O is the intersec-

tion of two circles.

Return INTER(O;CIR(P1; d1); CIR(P2; d2)). So, x and y satisfy:(
(x� x1)

2 + (y � y1)
2 = d21

(x� x2)
2 + (y � y2)

2 = d22:
(4)

The non-degenerate condition is:

P1 6= P2; d1 + d2 � jP1P2j: (5)

5. CS = fP1; l1g: d1 is the distance between point O and P1, and O is the intersection of a

line and a circle.

Return INTER(O;CIR(P1; d1); l1). So, x and y satisfy:(
(x� x1)

2 + (y � y1)
2 = d21

a1x + b1y + c1 = 0:
(6)

The non-degenerate condition is:

ja1x1 + b1y1 + cjq
a21 + b21

< d1: (7)

The details for cases CS = fP1; O2g, CS = fl1; l2g, CS = fl1; O1g, CS = fO1; O1g are

omitted.

CASE 2: O(a, b, c) is a line (DOF=2), the Constrain Set could be:

1. CS = fP0g: O is a line passing through point P0.

Return On(O;P0). So, (a, b, c) satisfy:

ax0 + by0 + c = 0: (8)

2. CS = fl0g: � is the angle between line O and line l0. O is a semi-free line.

Return On(O; l0). So, x and y satisfy:

(ba0 � ab0) � cos� = (aa0 + bb0) � sin�: (9)

3. CS = fO0g: line O are tangent to circle O0.

Return On(O;O0). So, x and y satisfy:

jax0 + by0 + cjp
a2 + b2

= r0: (10)



4. CS = fP1; P2g: O is the line passing through point P1; P2.

Return LINE(P1; P2). So, (a, b, c) satisfy:

8><
>:

a = y2 � y1
b = x1 � x2
c = x1y2 � x2y1:

(11)

The non-degenerate condition is:

x1 6= x2 and y1 6= y2 (12)

5. CS = fP1; l1g: O is the line passing through point P1; and has the angle � with line l1.

Return ALINE(P1; l1; �). So, (a, b, c) satisfy:(
ax1 + by1 + c = 0

(ba1 � ab1) � cos� = (aa1 + bb1) � sin�: (13)

6. CS = fl1; l2g: unreasonable and no return in this situation.

Details for cases CS = fP1; O2g, CS = fl1; O1g, and CS = fO1; O2g are omitted.

CASE 3: O (x, y, r) is a circle (DOF=3), the Constraint Set could be:

1. CS = fP0g: O is the circle passes through P0.

Return ON(O;P0). So, (x, y, r) satisfy:

(x� x0)
2 + (y � y0)

2 = r2: (14)

2. CS = fl0g: circle O is tangent to line l0.

Return ON(O; l0). So, (x, y, r) satisfy:

ja0x + b0y + c0jq
a20 + b20

= r: (15)

3. CS = fO0g: circle O is tangent to circle O0.

Return ON(O;O0). So, (x, y, r) satisfy:

q
(x� x0)2 + (y � y0)2 = jr � r0j: (16)

4. CS = fP1; P2g: circle O passes through points P1; P2.

Return INTER(O;P1; P2). So, (x, y, r) satisfy:(
(x� x1)

2 + (y � y1)
2 = r2

(x� x2)
2 + (y � y2)

2 = r2:
(17)



5. CS = fP1; l1g: circle O passes through point P1 and tangent to line l1.

Return INTER(O;P1; l1). So, (x, y, r) satisfy:8<
:

(x� x1)
2 + (y � y1)

2 = r2

ja1x+b1y+c1jp
a
2

1
+b2

1

= r: (18)

Details for cases CS = fP1; O2g, CS = fl1; l2g, CS = fl1; O1g, CS = fO1; O2g are omitted.

The cases CS = fP1; P2; P3g, CS = fP1; P2; l1g, CS = fP1; P2; O1g, CS = fP1; l1; l2g,
CS = fP1; l1; O1g, CS = fP1; O1; O2g, CS = fl1; l2; l3g, CS = fl1; l2; O1g, CS = fl1; O1; O2g,
CS = fO1; O2; O3g are the ten Appollonius problems, and could be solved by the Gr�obner basis

method [8] and the rule based method [6].

3 Intelligent Dynamic Geometry

3.1 Intelligent Dynamic Geometry

Comparing to the usual dynamic geometry, intelligent dynamic geometry has the following

advantages: easy diagram generation and more exible diagram manipulation.

Using the software to draw a diagram consists of three steps.

Drawing Sketch The user may use the mouse to draw a sketch of the diagram. Some topo-

logical properties such as coincidence and parallel, are also obtained in this step.

Generate Construction Sequence The user may add the geometric conditions, such as two

lines are parallel or an angle has a certain value, to the sketch. For each geometric

condition added, the software will automatically generate a construction sequence for the

diagram with Algorithm 2.1.

Generate the Diagram The software will determine the positions of the geometric objects in

the diagram according to the construction sequence and the sketch. This step is similar to

the input procedure of the ordinary dynamic geometry software, but is done automatically

according to some strategies.

A B

C
D

(a)

A B

CD’

(b)

A B

CD’’

(c)

Figure 2: Processes of drawing a parallelogram



Example 3.1 We will show how to draw a parallelogram. First, we drag an arbitrary quadri-

lateral ABCD(Figure 2(a)). Next, we add a constraint AB k CD. The software will redraw

the diagram to make this constraint satis�ed (Figure 2(b)). The corresponding construction

sequence is 8>>><
>>>:

POINT(A);POINT(B);POINT(C);

l1 = LINE(A;B); l2 = LINE(B;C);

l3 = PLINE(C; l1);ON(D; l3);

LINE(A;D);LINE(C;D):

(CS1)

We may similarly add another constraint AD k BC. Now the the quadrilateral becomes a

parallelogram (Figure 2(c)). The corresponding construction sequence is

8>>><
>>>:

POINT(A);POINT(B);POINT(C);

l1 = LINE(A;B); l2 = LINE(B;C);

l3 = PLINE(C; l1); l4 = PLINE(D; l2);

INTER(D; l3; l4);LINE(A;D);LINE(C;D):

(CS2)

Using this software, we may generate about 80 percent of the 512 diagrams in [1].

3.2 Intelligent Dragging

Using methods of automated generation allows us to have more power to manipulation the

diagram. Since the diagram is still drawn based on a construction sequence, the nice properties

of dynamic geometry such as dynamic measurement, dynamic transformation and free dragging

are still available. Furthermore, these properties are strengthened in the following way. If a

construction sequence for a diagram has been given, we may only drag some points in the

diagram. For instance, if using construction sequence (CS2) we cannot drag point D since it is

the intersection of two lines. But in our case, this drawback may be fully overcomed as follows.

Suppose that we want to drag point D in the parallelogram. Since the construction sequence

is generated by the software, we may re-generate a new construction sequence in which D is

free point. 8>>>>>>>><
>>>>>>>>:

POINT(D);POINT(A);POINT(B);

l1 = LINE(DA; ); l2 = LINE(A;B);

l3 = PLINE(D; l2);

l4 = PLINE(B; l1);

INTER(C; l3; l4);

LINE(C;D);LINE(C;B):

(CS3)

In this case, the user may drag point D freely.

3.3 Add Topological Relations Automatically

Geometric constraints are usually added during the second step of the drawing process. But,

many topological constraints may be added automatically when the user draws the sketch.



The following topological relations are considered for this (1) A point is on a line or a circle.

(2) Two lines are parallel or perpendicular. (3) A line is tangent to a circle. (4) Two circles

are tangent to each other. Generally, we use mouse operations to add topological relations as

follows: you need to choose relational objects and right-click the mouse to show a constraint

dialog and �ll in the constraint type. But it's often a very complicated and dull work when the

geometry objects and constraints grow big. For convenience, the software allows the user to add

topological relations when they drag a object. For example, when you drag a circle to change

the radius, the circle might reach a position where it is tangent to the another circle. If the

user drop the mouse at this time, this tangent relation is added as a constraint automatically.

3.4 Heuristics to Determine Objects with Multiple Solutions

In many cases, the constraints can not determine the geometric objects uniquely. In order to

have a unique solution, we need some heuristics. Two typical cases lead to multiple solutions

are to �nd intersection of circles and to draw semi-free objects.

We use the following two examples to show how to determine the intersection of circles.

Example 3.2 Let point P be the intersection of a line l1 = LINE(A;B) and circle c1 =

CIR(O; d). In order to have a unique and consistent solution, we assume that cos(OPA) is

always positive or negative. This sign is �rst determined as follows: we choose the solution

which is closer to the corresponding point in the sketch.

O

C

A

B

P

Figure 3. Intersections of a

line and a circle

O1

B

O2

DP

Figure 4. Intersections of

two circles

Example 3.3 P is the intersection of two circles (Figure 4). At the beginning, we choose the

solution which is on the same side of O1O2 with the corresponding point in the sketch. Later,

we will assume that the signed area PO1O2 will always be positive or negative.

A semi-free object is an object whose constraints can't totally determine the objects' position.

We usually have in�nite number of solutions in this case.. Two typical cases are to draw a point

on a circle or a line.

To draw a point P on a circle c with center O, let A be the position of Q in the sketch.

Then line OQ has two intersections with circle c, among which we select the one nearest to Q

as the solution to the intersection problem.



To draw a point P on a line l, let Q be the position of P in the sketch. We consider two

cases. (1) If l contains a point O which is already drawn, then we form the intersections of line

l and circle with center O and radius jOQj and select the one with less distance to Q as the

solution. (2) If l contains no point which is already drawn, then the solution is the foot of the

perpendicular drawn from Q to l.

References

[1] S.C. Chou, Mechanical Geometry Theorem Proving, D.Reidel Publishing Company, Dor-
drecht, Netherlands, 1988.

[2] J. Chuan, Geometric Constructions with the Computer, Proc. of ATCM95, pp.329-
338.(1995)

[3] D. Dennis and J. Confrey, Functions of a Curve: Leibniz's Original Notion of Functions and
Its Meaning for Parabola, The College Mathematics Journal, vol. 26, No. 3, pp. 124-131,
1995.

[4] X. S. Gao, C. C. Zhu, and Y. Huang, Building Dynamic Mathematical Models with Ge-
ometry Expert, I. Geometric Transformations, Functions and Plane Curves, Proc. of the
ATCM'98, eds W.C. Yang, pp. 216-224, Springer, 1998.

[5] X. S. Gao, Building Dynamic Mathematical Models with Geometry Expert, III. A Geom-
etry Deductive Database, Proc. ASCM99, W. Yang and D. Wang eds.,

[6] X. S. Gao and S. C. Chou, Solving Geometric Constraint Systems I. A Global Propagation
Approach, Computer Aided Design, 30(1), 47-54, 1998.

[7] X. S. Gao, J. Z. Zhang, and S. C. Chou, Geometry Expert, Nine Chapter Pub., 1998 (in
Chinese).

[8] C. Ho�mann, Geometric Constraint Solving in R2 and R3, in Computing in Euclidean
Geometry, D.Z.Du and F.Huang(eds), Word Scienti�c, 1995, pp. 266-298.

[9] N. Jakiw, Geometer's Sketchpad, User guide and Reference Manual, Key Curriculum Press,
1994.

[10] J.M. Laborde, GABRI Geometry II, Texas Instruments, Dallas, Texas, 1994.

[11] C.Z. Li and J.Z. Zhang, Readable Machine Solving in Geometry and ICAI Software MSG,
in Automated Geometry Deduction, X.S. Gao and D. Wang (eds), Springer, pp. 67{85,
1999

[12] J. King and D. Schattschneider, Geometry Turned On, The Mathematical Association of
America, 1997.

[13] J. Owen, Algebraic Solution for Geometry from Dimensional Constraints, in ACM Symp.,
Found of Solid ModelingA, CM PressA, ustin TX, 1991, pp. 397-407.


