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Abstract
In the continuing discussion on the use of technology in mathematics education, a position sometimes taken,
with plaughility, is that when students are capable of solving problems without technology, there is no need
to introduceit. The authors believe that even the most cgpable students in the most traditiona curriculum
can enrich their experiences and improve the qudity of their work by using gppropriate technology well in a
supporting role, and for less capable students technology provides real opportunities to incresse
understanding and confidence. To assist in directing such use of technology, the authors have developed a
flexible five-gtage process which in the most detailed problems leads sudents through initid exploration to
multi- tranded investigation of the problem given: the processisillustrated in detal in an example.

Introduction
In 2002, non-symbolic graphics calculators will be alowed to be used by students in the GCE Advanced
level Further Mathematics (university entrance) examination in Singgpore for the first time. The Singapore
Cambridge Generd Certificate of Education Advanced Level Examination is andionad examination
conducted in Singapore annudly. It comprises two three-hour papers. Thefirst coverstopicsfrom
agebra, andys's, complex numbers and matrices and vector spaces. The second paper covers topics from
mechanics and inferentid Satistics (for syllabus details, see the Singapore Ministry of Education web Site,
http:/Amww1.moe.edu.sy). Clearly, thereis an advantage to sudents in having a graphics caculator when
dtempting the datistics section of the paper, asit automates the long and tedious computations that must
be performed when gpplying the techniques of atigtica inference, and that is readily accepted by teachers.
However, because of the highly symbolic nature of the remaining content, many teachers are of the view
that the value to students of having access to a non-symbolic graphics calculaor in the examination is
somewhat limited. In essence the teechers are saying that, if the technology cannot directly replace the
need to perform the task, or offers only an dternative method of arriving at the required answer, then the
cdculator offerslittle vaue to the user. The authors chdlenge this one-dimensiond view of the role of
technology in mathematical aciivity. Even when the development of pencil-and- paper mathematicd skillsis
agod, the authors show that much can be done with a graphics caculator to support these skills and to
improve the quality of student responses. They leave aside theissue of the need for developing some of
these pencil- and-paper manipulative skills to such ahigh level of competence, when graphics cdculators



with symbolic processing capabilities are waiting in the wings (see for example, Demana and Waits, 1998;
Kissane, 1999; Raston, 1999).

In this paper, we show how students can use a technology such as a non-symbolic graphics cdculator asa
supporting medium to improve the qudity of their pencil-and- paper work. To this end aflexible five-stage
process, acronymicaly termed ESCAPE, is proposed. In the most extended and demanding problems, of
the sort that characterize advanced-level mathematics courses, the ESCAPE process leads students
through initia exploration to multi stranded exploration of the problem to be solved. The processis
illustrated using an examination question taken from atypica A-level mathematics examination paper, and
is offered both because of its potentia to broaden the view of the role of technology in mathematical
activity, but aso to encourege good mathematica practice, which should be agod of any mathematica
curriculum, technologically based or not.

The ESCAPE processfor using technology to improve the quality of sudents written
mathematics

The ESCAPE plan (Explore, Solve, Check, Alternative, Post-Explore) grows out of Polyd s origina
problem solving strategy (Polya, 1945) but has been adapted to incorporate technology into the process.
We assume that the students taking Advanced-level mathematics students have aready developed sone of
the dements of Polyas basc scheme: firg Understanding the Problem, then Devising a Plan, Carrying out
the Plan, and finally Looking Back over their work, because they have been successful in studying
mathematics to an advanced leve in a highly sdective educationd system. Such habits, whether explicit or
intuitive, must form the backbone of any successful student'swork, particularly in acurriculum which is till
largely centred on forma manipulation and reproduction of standard techniques. | n particular we assume
that, given sufficient prompting, students will know how to go about solving the routine (but relatively
sophidticated) problemsthey are presented with. The less able studentsin the group will find the
exploratory aspects of the scheme will help direct their attention towards the solution, and the checking
elements should reinforce their work and increase their confidence, or else direct their attention to the
existence of anomalies when their work isincorrect. What we wish to illudrate is the additiond insghts
and checking mechanisms that the new technol ogies make available, to support and enrich the pre-
technologica approach.

Addressed to awould- be student, the ESCAPE plan can be summarised as follows:
1: EXPL OREthe problem before you attempt a solution: working out what it means and getting idess as
to what might heppen.
What sort of answer is expected: a proof, a diagram, a number, an expresson?
Draw adiagramiif it seemsrelevant.



Modd the problem: introduce variable names as necessary, and turn the various
satements into formul ae, equations etc.
If there is a clear direct method according to what you have been taught, you might choose to use it
directly and proceed to solve the problem (Stage 2). Otherwise, or if you are unsure, explore
further using your cdculator in any of the following ways

. smple cdculaions of explicit formulas

. guess- and- check or trial-and-error methods

. tabulation of relevant functions

. graphing relevant functions

. use of built-in functions such as an equation solver
Often the problem will concern genera dgebraic expressions which you can explore by substituting
particular vaues for some of the variables to get an idea of possible outcomes.
When you are ready to start solving the problem, aways have an initid "guess' or estimate asto
what you might expect the answer to be.

2. Now attempt to SOL V E the problem, using the techniques you have been taught, which may or may
not involve some use of acaculator.
Ask yoursdf how confident you are with your "solution”. Sometimes you will fed very confident;
other timesyou will be not at dl sure that you have got to the right place.

3: CHECK thedetails of the solution when you think you have one:
Using your common Sense, your experience, your intuition, isthe answer smilar to
what you would expect?
If the answer isnumericd, isthe Sze reasonable? If there are units, do they make
sense? Do amentd rough caculation with single digits: does it agree roughly?
Generdly, does the answer make sense? Isit redistic? Doesit redly answer the problem set?
Try to think of a different way of doing the same problem: if you did a cdculation, could you have
used agebra? Did you work with particular numbers or with agenerd formula? Did you usea
diagram or agraphica method? If you did an exact computation resulting in a string of symbols,
check it with an gpproximate numerica answer.
Doing problems in more than one way makesit easier to check your work confidently AND gives
you much moreingght into what the problem is abot.

4. Try ALTERNATIVE methods of solving the problem and compare what happens.
If you used adirect computation, try an agebraic process; if you used an agebraic process or exact
computetion, try a numerica computation.



Y ou might also consider
. guess-and- check or trial-and-error methods
. tabulation of relevant functions
. graphing rdevant functions
. useof built-in functions such as an equation solver

5. POST-EXPL ORE the problem &ter obtaining a solution: re-read and re-think the question,
and work out what the solution meansin red terms: "interpret” it. Perhaps explore wider
problems, such as what happensif some of the origina details are changed.

Thefive-stage ESCAPE plan:

1: EXPLORE

2 SOLVE

3 CHECK

4: ALTERNATIVE

5: POST-EXPLORE
can be aworkable, effective strategy that uses technology to help you ESCAPE from difficulties and
achieve success and red understanding in mathematics.

An illustrative example of the use of ESCAPE
Although the five points of the plan are dl important, they often overlap and interact in red problems, which
can make specific identification of the five ages artificid. We illudtrate the philosophy, and the variability
of the procedure, in the following two-part example taken from the Universty of Cambridge GCE A-leve
paper in Further Mathematics Syllabus C; Paper 1 of June 1991.

The curve C has equation
_ax+bx+c
x+d
where g, b, c and d are constants. Thelines x=-2 and y=x-3 are
asymptotes of C, and C has aturning point where x = 1. Find the values

of a b, candd. [10]
Sketch the graph of C and mark in the coordinates of dl turning points and
intersections with the coord nate axes. [4]

Notes on the SOLUTION follow:



EXPLORING
As a preparation, use the calculator to graph curves like C with different values of a, b, c and d in the

equation. Look for the features mentioned, especidly asymptotes and turning-points. Look for any
connexion between the coefficients and the locations of the features.
Some examples appear in Figs 1 to 3:

| |-
A LA —|

Fig1l: Case Fig 2: Case Fig 3: Cae

a=b=c=d=1 a=1,b=2c=1,d=2 a=1b=-2c=1,d=2
Figure 1 was afird attempt; Figure 2 successfully located the vertica asymptote at x = —2, and Fig 3
successtully located the turning point a x = 1. Clearly there are more possibilities to explore!

[Figures 1 and 2 are drawn in the Standard Window of the calculator used, with —10 = x = 10 and -10 =
y = 10; the "spike" istypical of the way vertical asymptotes appear in alimited screen display. In the case
of Figure 3 the left hand portion did not gppear in the Standard Window and the screen was adjusted to
show —20 =y =20. The"exploration” in thisingtance was fairly precisdy directed; many students would
need to examine many additiona combinations before achieving the level of "success' illustrated in Figure
3, or might find it without alot of indght asto how it wasdone.]

SOLVING:
TYPICAL PENCIL-AND-PAPER WORKING (FIRST PART)
D If the denominator of the equationis x + d, there will usudly be a verticd asymptote at
x =—d. Since C hasaverticd asymptote x =—2, the vaue of d must bed = 2.
(2 If we divide the denominator into the numerator, we will get
ax®+bx +c p
T x+d N7
for some congtants m, n and p; and then the doping asymptote will be y = mx +n. Since
the doping asymptoteis y = x— 3, the equation of C must be

p
X+ 2

for some congtant p. It till remainsto find p.
(3)  Wecannow differentiate:

y=Xx-3+

p
(x+27?
and use the fact that C has aturning point at X = 1 to deduce that y'(1) = 0, and thus
p

0=1—§

y=1-



sothat p=9.
(4) Now we recombine to get the equation of C in the origind form:
9  (x-3(x+2+9 _x>°—x+3
X+2 X+2 X+2
and dedweethat a=1,b=-1,c=3andd=2.

y=x-3+

CHECKING (FIRST PART)

Now graph this function on the graphics caculator and check that it has al the festures expected.

Standard windows should show at least a portion of the graph; there will be aturning point close enough to
x =1, and the asymptotes expected should |ook reasonable. Depending on the window chosen, there will
be either a"fdse" vertica asymptote or aclear gap a x = —2 (Fig 4).

Also draw the doping asymptoteas Y = X — 3. This should seam to be a good fit to the curved graph.
Extend the window to see arange of the order of <10 =x=10,-20=y=200r-30=y =30. The
essential festures of the graph should now be gpparent (Fig 5,—30 =y = 30). Usethe caculator's
minimum functionto check that the turning point isa x = 1 asrequired (Fig 6).
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Fig 4. Standard window Fig 5: Adjusted window Fg 6: Minimum located

ALTERNATIVE METHODS we have covered thisin effect by using both agebraic reasoning and
graphical computing to produce compatible pictures.

TYPICAL PENCIL-AND-PAPER WORKING (SECOND PART)

The caculator gives us areasonably clear graph, but you will be expected to "show working" to justify
each feature required. In this part we switch congtantly from manuad SOL VING to caculator
CHECKING,; indeed it is naturd for studentsto first see the required features on their calculator and then
justify them by agebraic reasoning.

Q) I nter section with y-axis:

CALCULATOR: usethetracing cursor or a built-in vaue function withx =0toget y =15 (Fig 7).

3 3
PENCIL-AND-PAPER: in the equation put x = 0 to get y=5; (O’E ) isthe y-axis intercept.

M=z -H+ 20/ (H+ 20

H=n ’\':1.5




Fig 7: y-axis intercept
2 I nter sections with x-axis:
CALCULATOR: fromFigs 7 & 8itisfarly clear there are no intersections (given a basic knowledge of
rationa functions we can assume the graph does not bend further outside the window shown in FHg 8).

Fig 8: No x-axis intercepts
PENCIL-AND-PAPER: in the equation puty = 0to get X* —x +3=0.

N=r

1+
Using the quadratic equetion formulagives x = — D which indicates no red roots and therefore no

intersections. The complex roots 1 ti g have no significance on the graph.

(3  Vertical asymptote:

CALCULATOR: depending on the window chosen, vertica asymptotes appear either as spacesin the
graph (when there isa pixel centred on the x vaue where the function is undefined, Fig 9) or asa sharp
near-verticad line or spike (when the function is defined at each pixel centre, Fig 10). One of these festures

should clearly occur a and near x = —2 inthis case.
M=z -H+ 20 2D
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Fg 9: Missngvaue Fig 10: False asymptote
PENCIL-AND-PAPER: the vertica asymptote(s) occur when the denominator of the function is zero:
herewhenx+2=0,0r x = -2.
(4) Sloping asymptote:
CALCULATOR: without dgebrait isdifficult to get the asymptote correctly, dthough "educated”
guessing might find it. In this case the coefficients (a= 1) imply that the equation will bey = x + k for some
k, and successive guessing will probably lead toy = x — 3 asaplausible but not proven equation (Fig 11).
If desired, zooming out will confirm the asymptotic behaviour more vividly.

H=n ¥Y=-z

Fig 11: Soping asymptote?



PENCIL-AND-PAPER: redly hasto bedone dgebraicaly asin thefirst part.

[Note that none of the illustrations has equal scale units on the two axes, so that dopes of lines and shapes
of certain curves appear "wrong". Students experienced in the use of graphica caculators should be tsed
to this problem: if desired, the scales can be "squared”, but usudly with loss of detall in other aress]

(5)  Turning points.

CALCULATOR: Thereisdearly aminimum point intheregion of x = 1. Useof the cdculator's minimum
function placesit (correct to about 5 decima places) at x =1,y = 1 (Fig 12). Smilarly the cdculator's
maximum function locates the maximum point & x = -5,y = —11 (Fig 13).

Haxiraun
W=-E ¥=-11

Fg 12: Minimum point Fg 13: Maximum point
X —x+3 9 _ _
PENCIL-AND-PAPER: Take Y="42 O y:x—3+x_2 and differentiate:
dy  (x+2)(2x-1)-1(x*-x+23 dy 9
x - > or ax = 1- >
x+2 x-2)
Set thisto zero, which in the first form means the numerator is zero:
dy 9
—= =0 when (x+2) (2x-1)—(¢ —x+3)=0 or 1=
v (x+2) (2x=1) ( ) —y
(%2 +3x -2) —(x2 —x+3)=0 or x—22 =9
X2 +4x-5=0 or X—2=+3

x+5(x-1)=0
x=-borx=1
For each x-vadue we then cd culate the matching y-vaue to locate the two turning-pointsat (1, 1) and (—
5, —11). To confirm their nature we find the second derivative:

dy  x2+4x -5
& (2
Py (x+22@x+4)-2(x+2 (x*+4x—5)
e (x+2)*
 (2X+ D[0P +4x+4)—(C+4x =5)]
) (x+2"
= (X 182)3 [or directly from % =1- x _9 27 ]

At x = 1 the second derivative is positive, o the point isaminimum; and a x = -5 it is negative, o the
point isamaximum. Incidentaly we note that when x < -2 the second derivative is dways negative, so the



curve is concave down; and when x > 2 the second derivative is always podtive, so the curve is concave
up.

All of thisinformation can now be used to draw a good sketch graph of the function, which will be like that
seen on the caculator (Fig 14). CHECK ING has dready taken place in that we have worked out each
feature both manudly and on the calculator. AL TERNATIVE methods have likewise dready been
illustrated.

Bl

Hinirum [
n=1i =1

Fig 14: Ovedl picture.

POST-EXPLORING

The origind form of the equation invites us to consider the generd shape of the graph o arationd function

which isa quadratic function divided by alinear function

_a®+bx+c
x+d

Students can use their calculator to explore these asfully asthey wish. There are four features that can

dter the shape:

(1)  Thenumerator may have two digtinct roots, or one repested root, or no red roots: this will affect
the x-axis intercepts in particular.

(20  Wherethere aretwo roats, it is Sgnificant whether the point x = — d comes between the two roots,
or to the left of both, or to the right of both. It isassumed that neither root isat x = —d (if itis, the
graph degenerates into a sraight line with asingle missing point).

(3)  Apatfromthis, the vaue of d affects the location of the vertica asymptote and hence the y-axis
intercept, if any.

(49  Whena> 0 the doping asymptote dopes up to the right, and the reverse when a< 0.

Altogether (gpart from the degenerate case) there are four different basic shapes and two dozen or so

different combinations of shapesand interceptsl A selection of these are shown in Figs 15-19.
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Fig 15: Case Fig 16: Case Fig 17: Degenerate case
a=1,b=-6,c=8d=-1 a=1,b=-4c=3,d=-2 a=1b=-2c=0,d==2
Fig 18: Case Fig 19: Case

a=-1,b=6,c=-8,d=-1 a=-1,b=4c=-3,d==2

These examplesillugtrate the potentid of good technology to develop understanding beyond that available
with pencil-and- paper techniques done. With careful graphing (coupled with agebraic analysis) one can
"seg" the dynamic effect of the component parts of the function on the shape of the graph, and even
incorporate the degenerate case as an intermediate stage.

Discussion and conclusion
In this paper we have shown how atechnology such as the graphics caculator can be integrated into a
Sudent’ s problem solving strategies to enhance the qudity of the student’ s written mathematical work, even
when it contributes little to the direct solution of the problem. One might ask, why bother, if the able
student is capable of generating the required solution without such assistance? Our response would be
that, used in this way, the graphics caculator is able to give the sudent particular insghtsinto the problem
solution, most often agebraic in nature, through dternative graphical and numerica representations that
would not be available to the sudent otherwise. In addition, the ease with which the caculator is able to
generate particular cases of the generd solution provides aready mechanism for the student to check the
validity of the answers they obtain, in away that is not feasible with sandard pencil and paper techniques.
This has two advantages. it encourages good mathematical practice, and, if the god ismaximizing an
examination score, the graphics caculator enhances the ability of the student to detect the sort of minor
errors that even the best of students make under examination conditions.
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