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Abstract

In the present paper we give one of the simplest and the most ele-
mentary methods of evaluating the values ((s) of Riemann zeta function
for all the positive even integers s by using a uniform estimation of a
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trigonometirc polynomial Z(fl) on a closed interval [0, Z].
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All materials in our argument belong to the basics of Calculus and our
presentation is self-contained. We prove a linear recurrence equation for
¢(s) for even integers s > 1 and evaluate all of them with Mathematica.

1 Uniform estimation of a trigonometric poly-
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The following is a well known equality in the theory of Fourier analysis.
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It is also known that the convergence of the left hand of the above (1) is not
uniform on an open interval —m < & < 7 but uniform on any compact subset
K of the open interval.

Theorem 1.1 For an arbitrary compact subset K of the open interval (—m, )
there exists a positive constant C(K) such that the following inequalities are
valid for Vn > 0 and Vo € K
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Our proof of the above theorem is quite elementary and straightforward.
In fact, integrating the both sides of the following easily verified equation
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By virtue of the formula of integration by parts, the right hand side of (4)
is equal to
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The conclusion of the theorem easily comes out from the above (5).

2  Another proof of ((2) = %2 L.Euler missed

Applying Theorem 1.1 to the case K = [0

, 5], we have the following estimate

C = p_1Sinkr x C
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where C'is a positive constant which does not depend neither n nor z € [0, 7]

Integrating each side of the above estimate (6) with respect to  from 0 to
5 and taking the limit as n goes to the infinifty, we have
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We can easily verify the left hand side of (7) is a rational multiple of ((2).
That is, we arrive at the goal ((2) = %2 walking with short steps starting
from (7).
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3 The higher order primitive function and the
remainder of Taylor’s theorem

Let M be a positive integer. Multiplying each side of the estimate (6) in the
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previous section by (g — a:)2 and integrating it with respect to = from 0 to 3
respectively, we have the following
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The value of the right hand side of the above is calculated by hand or by
Mathematica as follows;

x T 2M ™ ;
Integrate[§(§ — x) ; {x, 0, 5}7 Assumptions — {M > 0}} (15)
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That is, we have
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On the other hand the definite integral
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on the left hand side of (14) is equal to the following;



1R (] — cos BT AT R
(_1)M(2M)!<( ) k2(1t1+2 2)_2((;i)| 92 k(QMl—)23+2>' (18)

This is a special case of Taylor’s theorem.

Theorem 3.1 Let n be a positive integer and f be an (n+1)-th continuously
differentiable function defined on an open interval I. Then we have
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That is, we can evaluate the definite integral (17) applying Taylor’s theorem

to the case, f(z) = coskx,n =2M,a =0,z = 7.

4 A recurrence formula for ((2m)(m =1,2,3,...)
and Mathematica computation

Summing up the value (18) of the definite integral (17) in the previous section
with respect to k£ from 1 to oo, we have an equality
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so special values of Riemann zeta function ¢(2m)(m = 1,2,3,...) satisfy the
following recurrence formula.
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after reversing the summation direction, which can be rewritten as
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This linear recurrence for {(2n) is closely related to that of Bernoulli numbers
B,, in the literature of Mathematics.
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In Mathematica programming, we can define a sequence in a recursive fash-
ion. Therefore, if we define a sequence {Z[2m]}(m = 1,2,3,...) by an initial

condition and a recurrence equation such as
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Mathematica generates all the values of Z[2m] = {(2m)(m = 1,2,3,...) in

principle.
First few terms are as follows;

Table[{Z[k], Zetalk]}, {k, 2,30, 2}]

fusd ol
6 6
s i
9 9
a0 i
945 945
71'48 71'48
9450 9450
7_‘,10 7‘_10
93555 9355
_691m'2 Lﬂg
638512875 638512875
o128 o128
18243225 18243225
__§5111§1__ __§5111§1__
32564156250 325641566250
43867m 43867
38979295480 125 38979295480125
174611720 174611720
15313294652)0625 1531329465200625
1553667 1553667
13447856940643125 13447856940643125
2363640917 2363640917
20191957196375G521875 201919571963756521875
1315862720 1315862m2°
11094481976030578125 11094481976030578125
67855602947 67855602947
564653660170076273671875 564653660170076273671875
6892673020804 6892673020804
5660878804669082674070015625

5660878804669082674070015625
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