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Abstract

In the present paper we give one of the simplest and the most ele-
mentary methods of evaluating the values ζ(s) of Riemann zeta function
for all the positive even integers s by using a uniform estimation of a

trigonometirc polynomial

n∑
k=1

(−1)k−1 sin kx

k
on a closed interval [0, π

2
].

All materials in our argument belong to the basics of Calculus and our
presentation is self-contained. We prove a linear recurrence equation for
ζ(s) for even integers s > 1 and evaluate all of them with Mathematica.

1 Uniform estimation of a trigonometric poly-

nomial
n∑

k=1
(−1)k−1sin kx

k

The following is a well known equality in the theory of Fourier analysis.

∞∑
k=1

(−1)k−1 sin kx

k
=

x

2
(−π < x < π). (1)

It is also known that the convergence of the left hand of the above (1) is not
uniform on an open interval −π < x < π but uniform on any compact subset
K of the open interval.

Theorem 1.1 For an arbitrary compact subset K of the open interval (−π, π)
there exists a positive constant C(K) such that the following inequalities are
valid for ∀n > 0 and ∀x ∈ K

−C(K)
n

<
n∑

k=1

(−1)k−1 sin kx

k
− x

2
<

C(K)
n

. (2)
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Our proof of the above theorem is quite elementary and straightforward.
In fact, integrating the both sides of the following easily verified equation

n∑
k=1

(−1)k−1 cos kx =
1
2

+ (−1)n−1 cos
(
n + 1

2

)
x

2 cos x
2

, (3)

we have

n∑
k=1

(−1)k−1 sin kx

k
=

x

2
+ (−1)n−1

∫ x

0

cos
(
n + 1

2

)
t

2 cos t
2

dt. (4)

By virtue of the formula of integration by parts, the right hand side of (4)
is equal to

x

2
+

(−1)n−1

2n + 1

(
sin
(
n + 1

2

)
x

cos x
2

−
∫ x

0

sin t
2 sin

(
n + 1

2

)
t

2 cos2 t
2

dt

)
. (5)

The conclusion of the theorem easily comes out from the above (5).

2 Another proof of ζ(2) = π2

6 L.Euler missed

Applying Theorem 1.1 to the case K = [0, π
2 ], we have the following estimate

−C

n
<

n∑
k=1

(−1)k−1 sin kx

k
− x

2
<

C

n
, (6)

where C is a positive constant which does not depend neither n nor x ∈ [0, π
2 ].

Integrating each side of the above estimate (6) with respect to x from 0 to
π
2 and taking the limit as n goes to the infinifty, we have

∞∑
k=1

(−1)k−1
∫ π

2

0

sin kx

k
dx =

∫ π
2

0

x

2
dx =

π2

16
. (7)

We can easily verify the left hand side of (7) is a rational multiple of ζ(2).
That is, we arrive at the goal ζ(2) = π2

6 walking with short steps starting
from (7).

∞∑
k=1

(−1)k−1(1 − cos kπ
2

)
k2

=
π2

16
. (8)

∞∑
k=1

1
(2k − 1)2

+
∞∑

k=1

−2
(4k − 2)2

=
π2

16
. (9)
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(
1 − 2

22

) ∞∑
k=1

1
(2k − 1)2

=
π2

16
. (10)

(
1 − 2

22

)( ∞∑
k=1

1
k2

−
∞∑

k=1

1

(2k)2

)
=

π2

16
. (11)

(
1 − 2

22

)(
1 − 1

22

) ∞∑
k=1

1
k2

=
π2

16
. (12)

∞∑
k=1

1
k2

=
π2

16(
1 − 2

22

)(
1 − 1

22

) =
π2

6
. (13)

3 The higher order primitive function and the
remainder of Taylor’s theorem

Let M be a positive integer. Multiplying each side of the estimate (6) in the
previous section by

(
π
2 − x

)2M and integrating it with respect to x from 0 to π
2

respectively, we have the following

∞∑
k=1

∫ π
2

0

(−1)k−1 sin kx

k

(π
2
− x
)2M

dx =
∫ π

2

0

x

2
(π
2
− x
)2M

dx. (14)

The value of the right hand side of the above is calculated by hand or by
Mathematica as follows;

Integrate
[x
2
(π
2
− x
)2M

,
{
x, 0,

π

2
}
, Assumptions → {M > 0}] (15)

2−2M−4π2M+2

(M + 1)(2M + 1)

That is, we have

∫ π
2

0

x

2
(π
2
− x
)2M

dx =
2−2M−4π2M+2

(M + 1)(2M + 1)
. (16)

On the other hand the definite integral

∫ π
2

0

(−1)k−1 sin kx

k

(π
2
− x
)2M

dx, (17)

on the left hand side of (14) is equal to the following;
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(−1)M (2M)!

(
(−1)k−1(1 − cos kπ

2

)
k2M+2

−
M∑

s=1

(−1)s−1

(2s)!
(π
2
)2s (−1)k−1

k2M−2s+2

)
. (18)

This is a special case of Taylor’s theorem.

Theorem 3.1 Let n be a positive integer and f be an (n+1)-th continuously
differentiable function defined on an open interval I. Then we have

f(x) −
n∑

ν=0

f (ν)(a)
ν!

(x− a)ν =
∫ x

a

f (n+1)(t)
n!

(x− t)ndt, (19)

for a ∈ I, x ∈ I.

That is, we can evaluate the definite integral (17) applying Taylor’s theorem
to the case, f(x) = cos kx, n = 2M, a = 0, x = π

2 .

4 A recurrence formula for ζ(2m)(m = 1, 2, 3, ...)
and Mathematica computation

Summing up the value (18) of the definite integral (17) in the previous section
with respect to k from 1 to ∞, we have an equality

(−1)M (2M)!

( ∞∑
k=1

(−1)k−1(1 − cos
(

kπ
2

))
k2M+2

−
M∑

s=1

(−1)s−1

(2s)!
(π
2
)2s

∞∑
k=1

(−1)k−1

k2M−2s+2

)
=

2−2M−4π2M+2

(M + 1)(2M + 1)
,

(20)
so special values of Riemann zeta function ζ(2m)(m = 1, 2, 3, ...) satisfy the

following recurrence formula.

ζ(2M+2) =

∑M
s=1

(−1)s−1

(2s)!

(
π
2

)2s(1 − 2
22M−2s+2

)
ζ(2M − 2s + 2) + (−1)M

2(2M+2)!

(
π
2

)2M+2(
1 − 1

22M+1

)(
1 − 1

22M+2

) ,

(21)
after reversing the summation direction, which can be rewritten as

ζ(m) = (−1)
m
2 −1(π

2
)m
(∑m

2 −1
s=1

(−1)s

(m−2s)!

(
π
2

)−2s(1 − 1
22s−1

)
ζ(2s)

)
+ 1

2m!(
1 − 1

2m−1

)(
1 − 1

2m

) . (22)

This linear recurrence for ζ(2n) is closely related to that of Bernoulli numbers
Bn in the literature of Mathematics.
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In Mathematica programming, we can define a sequence in a recursive fash-
ion. Therefore, if we define a sequence {Z[2m]}(m = 1, 2, 3, ...) by an initial
condition and a recurrence equation such as

Z[2] =
π2

6

and

Z[m ] := Z[m] =

∑m−2
2

s=1
(−1)s−1

(2s)!

(
π
2

)2s(1 − 1
2m−2s−1

)
Z[m− 2s] + (−1)

m−2
2

2m!

(
π
2

)m(
1 − 1

2m−1

)(
1 − 1

2m

) ,

Mathematica generates all the values of Z[2m] = ζ(2m)(m = 1, 2, 3, ...) in
principle.

First few terms are as follows;

Table[{Z [k], Zeta[k]}, {k, 2, 30, 2}]

π2

6
π2

6
π4

90
π4

90
π6

945
π6

945
π8

9450
π8

9450
π10

93555
π10

93555
691π12

638512875
691π12

638512875
2π14

18243225
2π14

18243225
3617π16

325641566250
3617π16

325641566250
43867π18

38979295480125
43867π18

38979295480125
174611π20

1531329465290625
174611π20

1531329465290625
155366π22

13447856940643125
155366π22

13447856940643125
236364091π24

201919571963756521875
236364091π24

201919571963756521875
1315862π26

11094481976030578125
1315862π26

11094481976030578125
6785560294π28

564653660170076273671875
6785560294π28

564653660170076273671875
6892673020804π30

5660878804669082674070015625
6892673020804π30

5660878804669082674070015625
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