
Designing Interactive Mathematics

June Lester
jalester@cecm.sfu.ca
Centre for Experimental and

 Constructive Mathematics
Simon Fraser University

Abstract. The use of interactivity in computer-based mathematics educa-
tion has been growing explosively in recent years, fueled mainly by the
internet, but also by the production of educational CDs and in-classroom
software packages. Unfortunately, the development of design principles for
onscreen mathematical interactivity is still in its infancy, and examples of in-
effective interaction or completely gratuitous "eye-candy" abound.

There is a need for a "grammar of interactivity" as a tool for onscreen com-
munication in much the same sense that the grammar of a language is a
necessary tool for verbal communication. Some of the required principles
can be adapted from basic principles of CHI (computer human interaction) or
even from webpage design ideas. However, effective mathematical commu-
nication also requires a careful examination of the intrinsic mathematical na-
ture of onscreen objects and how users interact with them: how should a
curve behave when dragged, for example, or how should an equation
transform when the equals sign is clicked?

In this paper, I'll try to identify and clarify some of the relevant issues for
the design of onscreen mathematical interactivity, and propose some pre-
liminary principles for its grammar.

1. Introduction. I should emphasize from the start that what I present here
comes not from any scientific study, but from a preliminary and somewhat
idiosyncratic exploration of what makes onscreen mathematical interactivity
work - or not. The impetus was frustration: while much well-intentioned
onscreen interactivity clearly fails to accomplish what it set out to, it’s often
very difficult to see just why it fails. I’ve been scanning various sources -
CHI/GUI design, graphical design, instructional design, my own head - for
potential rules to adapt to mathematical interactivity. The result is this pa-
per.

The section which follows discusses some basic issues related to mathe-
matical design; the next two examine specific sample principles. The last
section briefly lists other potential principles and how they might be applied.

2. The behaviour of onscreen objects. In the concrete-to-abstract contin-
uum of objects in the universe, onscreen objects lie somewhere in the mid-
dle: though lacking physical reality, they nevertheless

• possess a visual form
• move, reshape or otherwise change form
• interact with each other or with external “users”

(unlike more complete abstractions like “truth” or “set”).

This position in the middle has an important implication for computer-based
mathematics: while physical objects become more abstract when modeled
onscreen (e.g. science simulations), mathematical objects, already inher-
ently abstract, become more concrete. Dynamic geometry software
(Cinderella, Cabri, Geometer’s Sketchpad) is currently the strongest illustra-
tion of this tendency: static, abstract geometrical objects become dynamic
and even “tangible” onscreen. Some CASs (computer algebra systems) are
also headed this way: LiveMath users, for example, do substitutions by
dragging one equation on top of another.

For mathematical design, this has two consequences:
a) having more concrete mathematical objects allows object design

principles from engineering, manufacturing, etc. to be used (e.g. as in
[Norman])

b) while real world objects have pre-ordained physical behaviours
that can be modeled directly onscreen, mathematical abstractions do not;
appropriate onscreen behaviours must be either determined from basic
mathematical principles and conventions, or invented.

The latter consequence can make determining appropriate onscreen mathe-
matical behaviours sometimes difficult. Let’s look at how Geometer’s
Sketchpad and Cinderella treat circle intersections. Suppose a moving circle
passes another of equal radius with its centre constrained to a line through
the centre of the latter. What should happen to their points of intersection
as the moving circle passes by?

In Sketchpad, the two points exchange positions after the circles coincide -
a somewhat counterintuitive and undesirable result: continuous motion
should produce continuous consequences.

In Cinderella, the points don’t exchange positions:

A more “natural” behaviour - or is it? Suppose the moving circle’s centre
passes only very near the fixed circle’s centre (so the circles never exactly
coincide). The intersection points are then seen (in either program) to do a
rapid flip around the stationary circle as the other passes by. So if small
perturbations in position should cause only small changes in behaviour,
perhaps the flipping behaviour is indeed more appropriate? In fact, either
behaviour is arguably better than the other; we have no “physical” uni-
verse to arbitrate the question.

3. Natural mappings. Sometimes appropriate onscreen mathematical be-
haviours can be derived from natural mappings - “physical analogies or cul-
tural standards” [Norman] which relate “controls and their movements” to
the real world. So, for example, push a window control up to raise the win-
dow and down to lower it. The design principle: exploit natural mappings
wherever possible; otherwise standardize. In the context of onscreen
mathematics, this may be expanded to mean

If possible, model the behaviours of onscreen mathematical
objects by observing and analysing their “natural” mathematical
properties; otherwise, invent and standardize behaviours.

A first criterion is of course that the natural mapping represent the mathe-
matics concerned correctly. This shouldn’t need saying, but does: I clearly
remember an educational television animation which “solved” the equation
3x − 2 = 2 x + 5 by moving an x to the opposite side:

Though incorrect, this example does illustrate one very basic math-to-
screen mapping: mathematically transforming an expression by moving bits
of it around. LiveMath implements this mapping extensively - and correctly:
dragging the x across the = sign in 3x − 2 = 2 x + 5 gives the intelligent result
3x−7

x = 2.

To see how an analysis of mathematical behaviour might map mathematics
to interactive design, we look at an interactive hyperbola from the Explore-
Math website. The page is visually attractive and well laid out:

Below the graph are standardized tools for panning, zooming, saving, etc..
Check boxes (lower left) control the visibility of the asymptotes, the
“string”, etc. The sliders above them control parameters defining the posi-
tion and shape of the hyperbola; dragging the marked points of the graph
also changes these parameters.

How then does dragging actually change the hyperbola? Dragging the
centre of the hyperbola or adjusting the h and k sliders translates the
hyperbola itself exactly as expected. But careful analysis reveals a problem
with the dragging interaction between parameters and shape.

The shape of the hyperbola is naturally
determined in either of two ways:

• if we are looking at the equation of
the hyperbola, by the pair of parameters
{a, b} (the lengths of the semi-axis and
conjugate semi-axis)

• if we are looking more at the ge-
ometry of the hyperbola, by the pair of pa-
rameters {c, L} (the focal distance and
the string number L = L1 − L2).

The parameters of each pair are independent, so changing one parameter
of a pair shouldn’t affect the other. That is almost what happens:

✔ changing either a or b by dragging its slider leaves the other fixed
and changes c and L as appropriate

✔ dragging a focus changes c but not L. (Unfortunately, L cannot be
changed directly; dragging the point on the hyperbola just moves it around
the curve.)

✗ changing a by dragging a vertex changes b but not c (the slider for
b is seen to move disconcertingly on its own).

This last behaviour is both inconsistent and inappropriate; perhaps it was
decided that, since b can’t be varied by dragging directly on a point, it
should become dependent on the other parameters. A possible remedy:
remove this dependence and allow dragging the conjugate foci (the ghost
points in the diagram) to vary b.

We may abstract a basic principle here.

Principle of Parametric Independence: If two or more parame-
ters controlling the behaviour of an onscreen object are mathe-
matically independent, then changing one of them, either di-
rectly or by dragging on the object, should have no effect on the
other parameters or on the aspects of the object they control.

In light of the previous section, rules derived from natural mappings may be
difficult to obtain in general. The fallback: standardize - choose appropriate
but essentially arbitrary behavioural conventions and stick to them. This is

itself unknown and possibly dangerous territory: hic sunt dracones. For
relatively elementary mathematics, it may be possible to develop universal
conventions: click on a Σ sign to expand the sum, for example, or click on
the word “Theorem” to go to its proof. But in higher mathematics, where
symbols are often “overloaded” (many meanings for one symbol, depending
on context), it may be impossible. There, it may be more practical simply to
define interactive conventions at the beginning of the work much as we
now define notation; something like “in this paper, clicking on any blue ⊗
operator will commute the operands on either side of it” or “all tree dia-
grams on these pages have the property that dragging any node off the
screen deletes it and all dependent nodes”.

4. Visible behaviours. Another basic design principle, adapted from CHI:

Make interactive behaviours visible, at all stages of the interaction:
• pre-interaction: show the affordances of an onscreen object (the

possible interactions it affords), i.e. show what the viewer can do with it.
• co-interaction: provide feedback, i.e. show something happening

as the used interacts with the object.
• post-interaction: show the resulting state of the object, i.e. show

how the user changed it and whether/how it can be undone or restarted.

Look at how LiveMath does this with substitutions. A LiveMath substitution
is made by dragging one equation onto the other.

The equation to be dragged is first
selected (and thus highlighted). Then

 • while the cursor is over the se-
lected equation, holding the com-
mand/ control key gives a pointing
hand icon, indicating that the equa-
tion can be dragged

 • as the equation is dragged, a box
appears around it and potential desti-
nations are highlighted when close
enough

 • after the equation is dropped, a
new equation appears along with the
word “substitute”, to indicate how it
was created.

Another example, from WebEQ, shows how invisible affordances can make
effective interaction difficult. Though we are instructed to click on the con-
tinued fraction to expand it, most clicks have no effect. Trial and error
eventually hits the right target: the ellipsis The fraction expands by two
levels, and by two more when the next ellipsis is clicked. It reverts two lev-
els when the third ellipsis is clicked, and - more trial and error - whenever
the last + sign at either stage is clicked.

The technology used here is clearly very useful; the website has other in-
teresting demonstrations. Visible affordances would greatly improve this
particular one - a blue ellipsis or a green + sign to hint that something hap-
pens when they are clicked, for example. (There is also a question of the
appropriate mathematical behaviour here: why does the fraction expand by
two levels at each click?)

5. Additional design principles. There are potentially many of these.
What follows is a somewhat eclectic list from various sources (including me)
with some comments as to how they could be adapted to onscreen mathe-
matical design.

• KISS - keep it strictly simple. Simplify details of calculations,
proofs, navigation, explanations, visual appearances, etc. Simplify and
clarify basic mathematical structures and relationships before designing how
they interact.

• Keep the interactivity focussed. Keep interactions minimal, re-
stricted to the important mathematics. Use constraints to keep viewers on
track and off tangents, and don’t present too many choices. Use “lockouts”
to prevent omission of essential steps.

• Adapt basic CHI principles to mathematical interactions. For ex-
ample, numerical information essential to understanding or decision making
should be immediately available onscreen and not several clicks away or
(worse) to be recalled from memory. Or, for numerical inputs that change
during interactions, allow point and select input in preference to typed input
(e.g. design slider inputs for parameters).

• Use appropriate onscreen graphical design. For example, the
KILL rule (keep it large and legible) - watch out for subscript sizes, etc.
Fade the unimportant parts of diagrams (e.g. graph grids) into the back-
ground. Use “white space” liberally. And so on - the visual interface to on-
screen mathematics is as important as the interactive one.

• Adapt instructional design principles to onscreen presentations.
For example, avoid spatio-temporal language (e.g. “from the previous
lemma, ...”) in hyperlinked materials (since you don’t necessarily know
where your reader is coming from). Distance education ID should be par-
ticularly relevant here, since it deals with non-face-to-face instruction. An
example: provide “reader-stoppers” - natural stop-and-think points - at
appropriate places in the material [Rowntree].

• Allow the viewer to act directly on onscreen objects by clicking or
dragging rather than (only) through buttons, sliders, or other controls. Ob-
jects which can be manipulated directly are easier to understand and feel
more natural: dragging one equation onto another to substitute (LiveMath)
is much more intuitive than typing a command.

• Don’t use animation as a substitute for interaction. It is more in-
structive if a viewer produces changes himself by dragging, clicking or oth-
erwise actively controlling them than if he passively watches an animation
of those changes (e.g. a graph whose shape changes as a parameter is
varied). For similar reasons, any animations that are used should be stop-
pable and steppable.

• Use “hypertelevision” sparingly. Don’t rely solely on interaction/
navigation of the form “click here to go to the next step”, which can be pas-
sive and unengaging (like using a television remote control to click through
channels). If possible, replace it by something more meaningful, such as
“click on an equilateral triangle to continue” in a lesson on triangles, which
also checks understanding. On the other hand, hyper-television may be
appropriate for content which is inherently stepped (e.g. a proof) or may be
useful to help “chunk” material appropriately.

• Allow for multiple use and reuse. This is particularly important
when designing “learning objects” (small chunks of learning material meant
for use in a larger context). Suggestions:

- keep lesson materials separate from the interactive mathe-
matical objects (one object might be usable in several lessons)

- make the mathematical object configurable (so it can be used
to teach different ideas, e.g. a grapher with multiple input possibilities)

- consider the possible contexts of use in the design.

..

References and Notes. All links checked and correct as of July 31, 2000.

Software/Webpages

• Dynamic geometry software allows onsreen construction of geo-
metric objects and interaction, principally by dragging. Three examples:
- Cinderella <www.cinderella.de>
- Geometer’s Sketchpad <www.keypress.com/Pages/Prod_Sketchpad.html>
- Cabri <www.cabri.net/>.
All three programs allow pages to be saved/converted into applets for web-
pages.

• ExploreMath <www.exploremath.com> is a website of shockwave-
driven activities for school-level mathematics. The interactive hyperbola, at
<www.exploremath.com/activities/Activity_page.cfm?ActivityID=5>, is part
of the section on conic sections; note that the interactive ellipse in that sec-
tion behaves correctly. The companion site, ExploreScience
<www.explorescience.com>, has similarly designed science activities.

• LiveMath <www.livemath.com> is a teaching-oriented CAS pub-
lished by WebPrimitives <www.webprimitives.com>. A LiveMath plugin al-
lows LiveMath notebooks in web pages. LiveMath versions for Macintosh
and Windows currently exist; a Linux version is in the works. In previous
lives, LiveMath was Theorist and then MathView.

• WebEQ <www.webeq.com> is a programming interface for interac-
tive mathematical text. The example cited, entitled Ramanujan Identities, is
at <www.webeq.com/showcase/tour/ramanujan.html>; other examples can
be found in this “tour” section. WebEQ has recently been acquired by De-
sign Science, Inc. <www.mathtype.com>, makers of MathType.

Books

• Julie Jacobs & William Mueller, Design Principles for Interactive Texts.
An online book discussing graphical, psychological and evaluation principles.
<www.math.duke.edu/education/ccp/resources/write/design/index.html>

• Donald A. Norman, The Design of Everyday Things, Basic Books,
1988. ISBN 0-385-26774-6. A very readable book on general design princi-
ples.

• Derek Rowntree, Teaching Through Self-instruction. Kogan Page,
London, 1986. ISBN 1-85091-148-7. Discussion and examples of “reader-
stoppers” appear on page 93 and many others; see the index.

• John Sweller, Instructional Design in Technical Areas. ACER Press,
Camberwell, Australia, 1999. ISBN 0-86431-312-8. A potential source of
further onscreen mathematical design principles based on cognitive load
theory.

http://www.cinderella.de
htttp://www.keypress.com/Pages/Prod_Sketchpad.html
http://www.cabri.net
http://www.exploremath.com
http://www.exploremath.com/activities/Activity_page.cfm?ActivityID=5
http://www.explorescience.com
http://www.livemath.com
http://www.webprimitives.com
http://www.webeq.com
http://www.webeq.com/showcase/tour/ramanujan.html
http://www.mathtype.com
http://www.math.duke.edu/education/ccp/resources/write/design/index.html

