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Abstract 
Elliptic Curve Cryptosystem have recently come into strong consideration, particularly by 
standards developers, as alternatives to established standard cryptosystem such as RSA 
public key. Elliptic Curve Cryptosystem is “the next generation” of public key 
cryptography, providing greater strength, higher speed, smaller keys than established 
systems. 

 
An elliptic curve operation involves a sequence of elliptic curve additions, and each 
addition consists of several arithmetic operations in the finite field. The premise is that an 
elliptic curve 256-bit cryptosystem offers better security than of 1024-bit RSA. 
 
The opportunity to conveniently generate Elliptic Curve Cryptosystem using commercial 
Mathematical Software has now become feasible. The purpose of this paper is to show how 
the powerful computer algebra system Maple V can be used to explore and visualize Elliptic 
Curve Cryptosystem. 
 
The paper begins with some general background of Elliptic Curve Cryptosystem. 
Cryptographic operations tend to be highly CPU intensive, particularly public key 
operations. Then this paper discusses the simulation on Elliptic Curve Cryptosystem for 
256-bit key length.  

 
1 General Background Of Elliptic Curve Cryptosystem(ECC) 

Elliptic Curve Cryptosystems is categorized as a public key cryptosystems. In a public-key 
cryptosystem, the abilities to perform encryption and decryption are separated. The 
encryption rule employs a public key E (that is  E = k), while the decryption rule requires a 
different (but mathematically related) private key D (that is D = r). Knowledge of the public 
key allows encryption of plaintext but does not allow decryption of the ciphertext. Once a 
person publishes his/her public key, then anyone can use the public key to encrypt messages 
especially intended for that person. The private key is kept secret so that only the intended 
individual can decrypt the ciphertext.  

 
For users to be able to understand the concept of ECC, they must first look into the 
background of elliptic curve. Elliptic curve cryptosystems were introduced in the papers of 
Koblitz [9] and Miller [10]. This part will provide an intuitive introduction to Elliptic 



 

 

Elliptic Curve   y 2 = x 3 - 17x  - 9
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Curves and how they are used to create a secure and powerful cryptosystem. The readers  
are suggested to see [7] [8] [9] [10] for further overview. 

2 General Background Of Elliptic Curve 
An elliptic curve is simply the locus of points in the x-y plane that satisfy an algebraic 
equation y2 = x3 + bx + c of the form. Each choice of numbers b and c yields different 
elliptic curves. The value of x, y, b and c may be from any field, namely complex number, 
real number, finite number and so on [2]. An example of elliptic curve is as shown below in 
Figure 1. 

 
 

2.1 Elliptic Curve Groups Over Fp 
Calculations over the real numbers are 
slow and inaccurate due to round-off 
error. Cryptographic applications require 
fast and precise arithmetic; thus elliptic 
curve groups over the finite fields of Fp 
and F2

m are used in practice.  
 

The finite field Fp is comprised of the set 
of integers {0, 1, 2, …, p – 1}. Each such 
integer is represented by a binary string 
of length exactly t =  log2 p  consisting of 
the binary representation of the integer 
padded on the left with the appropriate 
number of 0’s.  

 
An elliptic curve with the underlying 
field of Fp can be formed by choosing the 
variables b and c within the field of Fp. 
The elliptic curve includes all points (x, 
y), which satisfy the elliptic curve 
equation modulo p (where x and y are 
numbers in Fp).  
 
If x3 + bx + c contains no repeating factors (or, equivalently, if 4b3 + 27c2 mod p ≠ 0), then 
the elliptic curve can be used to form a group. An elliptic curve group over Fp consists of 
the points on the corresponding elliptic curve, together with a special point O, called the 
point at infinity. There are finitely many points on such an elliptic curve [3]. 

 
 
3 ECC Engine 

ECC engine can be divided into three parts, which are: 
• Public Key Generation – this include prime number p generation, elliptic curve 

generation, initial point P generation, public key k and generation of point kP. 

Figure 1. Elliptic Curve  y2 = x3 – 17x − 9 



 

 

• Encryption – this include the generation of secret key r, generation of point rP and point 
rkP. 

• Decryption – including generation of point rkP (this value should be same as point rkP 
generated during encryption) and also involved in solving linear equations (refer section 
3.3). 

 
3.1 Public Key Generation 

This process is will be done by the receiver. Firstly the receiver have to generate prime 
number 256-bit pseudo-randomly.  This can be done by choosing a number, x, randomly 
using rand function. In order to generate 256- bit number, p, a simple formula is used: 

p = 2256+128x mod 2256 

To check whether the number is prime or not, function isprime is used. If the number is not 
prime, function netxprime may be used to find next prime number. 

>  flag:=0; 
>  while flag<>1 do 
>    x:=rand()/10.0^12; 
>    randp:=trunc(2^(256+128*x)) mod 2^256; 
>       if isprime(randp)<> true then 
>          nextprime(randp);   
>          n:=%;   
>          p:=n; 
>       else 
>          p:=randp; 
>       fi; 
 

The prime number 256-bit p, should fulfill a criteria, where p = -1 mod 4.   
>    test:=p mod 4; 
>    if test =3 then 
>        flag:=1; 
>        break; 
>    else 
>      flag:=0; 
>    fi; 
>  od; 

 

 Sample output: 
> p:=55755856259966275371575697195005993278284027256745433338915789625709987627063. 

 
The next process is generating elliptic curve, y2 = x3 + bx + c. Value b and c are generated 
randomly using rand function. It is also recommended to take prime numbers for b and c. 

>  b:=rand(p); 
>  b(); 
>  c:=rand(p); 
>  c(); 

 
 Sample output: 

> b:=17890289192135612607352510730917250551662575378703260594827665952843024596403 
> c:=42138790892025581984217012130179718041978275120415341335913239520254182879379 

 



 

 

If for  the chosen values b and c result in 4b3 + 27c2  not equal to zero then they are 
accepted. Otherwise, search  for  the next suitable  pair. 

>  ans:= 4*(b^3) + 27*(c^2); 
>  while ans=0 do 
>      b(); 
>      c(); 
>      ans:= 4*(b^3) + 27*(c^3); 
>  od; 

 
The next step is finding the initial point, P(x0, y0). The computations involved are as follows: 
Step 1: Find the x value randomly (in the range of p, 0< x< p). 
Step 2: Test x value to see if z = x3 + bx + c mod p is quadratic residue (q) by applying 

Euler’s criterion. 
Step 3: Using Euler’s criterion, find qr as follows:   

   qr = z(p-1)/2 mod p 
If qr = 1 then it is a quadratic residue modulo p. 

Step 4: Then, the formula to have the square roots of a quadratic residue z  
(also refers to  y2) is applied. 

    z (p+1)/4 mod p  (this is due to the nature of prime, p = -1 mod 4). 
Step 5: Solve for y using the formula z (p+1)/4 mod p. [5][6] 

 
In Maple V, the computation is as follows: 

>  # Find x randomly 
>  flag:=1;    
>  while flag<>0 do 
>      x1:=rand(p); 
>      x:=x1(); 
>      z:= x^3 + b*x + c mod p; 
>      qr:=z&^((p-1)/2) mod p; 
>      if qr = 1 then 
>         flag:=0; 
>      fi; 
>  od; 
>  
>  #To check the nature of prime 
>  s:=p mod 4; 
>  if s=3 then 
>     ex:=(p+1)/4; 
>  fi; 
>   
>  #To find the value of y 
>  y:=z&^ex mod p; 

 
 Sample output: 

># To find the initial point on the curve P (x0, y0). 
> x0 := 25310347367171583082854772584115503678456365680274536128411346757957478329205 
> y0 := 46751032657002880765202883369103632744069530285461100546191761999841908459679 

 
The fourth step is generating the secret key, k. The value k is generated randomly using rand 
function. 

>  k:=rand(9999); 



 

 

 Sample output: 
> k := 4527 
 

The fifth step is calculating kP. To do this a function named scalarmult is defined.   
>  scalarmult:=proc(x,y,k) 
>  global p,b,c; 
>  local flag,rx,ry,tx,ty,i; 
>   
>  tx:=x; 
>  ty:=y; 
>   
> #To add point repetitively 
>  for i from k by -1 to 2 do 
>       (rx,ry) :=addpoint(x,y,tx,ty); 
>       tx:=rx; 
>       ty:=ry;                
>  od; 
>  RETURN(tx,ty); 
>  end: 

 
Sample output: 
> #Generate kP (kPx0 , kPy0) 
> kPx0:= 55399931627495512984169137377907510175521866970968028926605306710404685111880 
> kPy0 :=14256969885540287872114700569909650995703486166745002948833053080582261726557 
 
Function addpoint in scalarmult function is a user-defined function. This function 
(addpoint) adds two points on the curve in order to get the third point, which is also on the 
curve. 

>  addpoint:=proc(tempX,tempY,x,y) 
>  global p,b,c; 
>  local lamda,semX,semY,resultx,resulty,xans,yans,mult; 
>   
> #To check the 2nd point is not the inverse of the 1st point  
> #and also the 1st point is not (x,0) 
> if tempX=x and tempY=-y and not(tempY=0)then 
>     printf("Point at infinity"); 
>  
> #Doubling the point when both points are the same  
> elif tempX=x and tempY=y then 
>       mult:=multiplyInverse(2*tempY,p); 
>       lamda:= (3*tempX^2 + b)* mult; 
>       lamda:= lamda mod p; 
>        
>       #Find the value for x 
>       semX:= lamda^2 -tempX-x; 
>       semX:= semX mod p; 
>       resultx:=semX;      
>       #Find the value for y 
>       semY:=  lamda* (tempX-resultx)-tempY;       
>       semY:= semY mod p; 
>       resulty:= semY;  
> else 
>      #Adding two distinct point 



 

 

>      xans:= tempX-x; 
>      yans:= tempY-y; 
>       
>      lamda:= yans * (multiplyInverse(xans,p)); 
>      lamda:= lamda mod p;     
>       
>      #Find the value x 
>      semX:= lamda^2 - tempX - x;     
>      semX:= semX mod p; 
>      resultx:=semX;      
>       
>      #Find the y value 
>      semY:= lamda * (tempX-resultx)-tempY;      
>      semY:= semY mod p; 
>      resulty:= semY; 
> fi; 
>   
>  RETURN(resultx,resulty); 
>   
>  end: 

 
Function multiplyinverse in addpoint function is a user-defined function. This function 
(multiplyinverse) finds multiplicative inverse of the number using formula x(p - 2)mod p. 
Finally, p, b, c, P and kP that are the public keys will be passed to the sender to do the 
encryption [4] 

 
3.2 Encryption  

The sender will do this process. The steps involved are as follows; 
Step 1: Generate secret key r. 
Step 2: Calculate rP (P is the initial point). 
Step 3: Calculate rkP. 
Step 3: Get the plain text a1 and a2. 
Step 4: Generate cipher text d and e. using the formula given 

d ( d = rkx0 * a1)  
e ( e = rky0 * a2) [4] 
 

> encryption:=proc() 
>   
>  global p,b,c,rPX,rPY, 
>         x,y,d,e, 
>         rkPX,rkPY; 
>   
>  local a1,a2,r; 
>        
>  d:=0; 
>  e:=0; 
>    
>  #Step1: Generate random number r := rand(9999) 
>  r:=keyr(); 
>  
>  #Step2: Calculate rP 



 

 

>  scalarmult(x,y,r); 
>  rPX,rPY:=%; 
> 
>  #Step3: Calculate rkP 
>  scalarmult(kPX,kPY,r); 
>  rkPX,rkPY:=%; 
>   
>  #Step4:To read the message 
>  message(); 
>  a1,a2:=%; 
> 
>  #Step5:To encrypt data 
>  d:=rkPX*a1 mod p; 
>  e:=rkPY*a2 mod p; 
>   
>  RETURN(d,e);   
>  end: 

 
 Sample output: 

> r :=6459. 
 

> #To calculate rP( rPx0, rPy0) 
> rPx0:=37619123447363204419848893204707252554559986357917974750508586519571899861509 
> rPy0:=14093420069777191955170789677369508162053042007492963489365378717677341268050 
 
> #To calculate rP( rkPx0, rkPy0) 
> rkPx0:=50595393987755189892258981015940966687614245775209437530830285060998411146289 
> rkPy0 :=21854521793814014707227837590700606941317251445886882671669683288918913499812 
 
> #Read the  secret message  a1 and a2 
> a1:=635709568337115114395456457424789965157 
> a2 :=62517676918298663777362322669257586755 

 
       > #Encrypt the message…results in d and e 

> d:=24563675628938377003564243352417299208337453806978857651979551486638942429244 
> e:=44131538599835625289098055726587201067331396076879321899194512077774738690628 

 

3.3 Decryption 
This process is done by the receiver. The steps involved are as follows: 
Step1 : Calculate  krP = (krx0, kry0) . This value should be the same as rkP calculated by 

sender during encryption process. This value is calculated by decrypt procedure  and 
then passed  to this procedure. 

Step 2: Get the cipher text. These values are referred as d and e.  
Step 3: Solve for the equation 

 krPX * a1 ≡ d (mod p) 
 krPY * a2 ≡ e (mod p) [4] 

 
> decryption:=proc() 
>  
> global d,e,rPX,rPY,p,k; 
> local krPX,krPY,tempx,tempy,resultx,resulty;  
>  



 

 

> #Calculate krP 
> scalarmult(rPX,rPY,k); 
> (krPX,krPY):=%; 
>   
> #solve the equation for decryption 
> tempx:= krPX&^(p-2) mod p; 
> resultx:=(tempx * d) mod p;  
> tempy:=krPY&^(p-2) mod p; 
> resulty:=(tempy * e) mod p; 
>  
> RETURN (resultx,resulty); 
> end: 

  
Sample output: 
> #To calculate rP( krPx0, krPy0) 
> krPx0:=50595393987755189892258981015940966687614245775209437530830285060998411146289  
> krPy0:=21854521793814014707227837590700606941317251445886882671669683288918913499812 
 
> #Decrypt the message back to plain text c1, c2 which is the secret message pair a1, a2. 
> c1:=635709568337115114395456457424789965157 
> c2 := 62517676918298663777362322669257586755 

 
4 Efficiency of ECC 

Public-key cryptographic systems have proven to be effective and more manageable than 
symmetric key systems in a large number of scenarios. When talking about the efficiency of 
a public-key cryptographic system, there are three factors to be considered: 
! Computational overheads: how much computation is required to perform the public 

key and private key transformation. 
! Key size: How many bits are required to store the key pairs and associated system 

parameters. 
! Bandwidth: How many bits must be communicated to transfer an encrypted message 

or a signature. 
ECC offers significant efficiency savings due to its added strength-per-bit. These savings 
are advantageous in many applications, particularly when computational power, bandwidth, 
or storage space is limited.[1] Advantages of ECC in a constrained environment include the 
following: 
# Shorter keys - 161-bit ECC is about or at least better than 1024-bit RSA. 
# Shorter signatures – 322-bit ECC is or at least better than about 1024-bit RSA.  
# Shorter certificates – 256-byte RSA is about 62-byte ECC. 
# Simpler generation of key pair, given a valid set of domain parameters. 
# Large proportion of the signature generation and encrypting transformations can be 
pre-computed such that computational overhead can be saved. [12][13] 
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Figure 2 shows the equivalent key length( in the number of bits ) to be 
considered sufficiently secure for RSA and ECC. 



 

 

5   Security of ECC 
The emphasis in terms of security is placed on theoretical security – breaking a public key 
system in general. The best algorithm known to date for the ECC with DLP( Discrete 
Logarithm Problem )in general is the Pollard rho-method[14] which takes about 
O( 2/ pπ ) steps, where a step here is an elliptic curve addition.[15]  
 
Then there is also the general–purpose algorithms that always succeed in solving the integer 
factorization problem( thus solving RSA ) run in subexponential time, which means the 
problem should still be considered hard but not as hard as those problem which admit only 
fully exponential time. Let n, the product of 2 large primes, be the modulus of RSA. 
Currently, the running time for the best general algorithms to factor n  is:  
 O( exp{( c + o(1) )(ln n)1/3(ln ln n)2/3 } ) for constant c = 1.9229.  
Simply put, the elliptic curve discrete logarithm problem is currently considered harder than 
integer factorization problem. 
 
In [12], key size recommendations are presented for several classical cryptosystems based 
on the hyphotheses: 

i. Relative to the breaking a 56-bit DES key would cost 5*105  Mips Years(or 
equivalent to using USD 50 millions machine within 2 days) in 1982 

ii. Moore’s Law projects that computing power per chip doubles every 18 months 
iii. The amount of computing power and RAM would double every  18 months per 

USD 1 
iv. Monetary budget available to the ones breaking cryptographic keys doubles every 

ten years due to the trend of US GNP doubling on average every ten years 
v. On average it takes  18 months for cryptanalytic developments affecting  classical 

asymmmetric system  to become twice as efective without any major breakthrough, 
. 
The graph in Figure 2 depicts the summary of the  key length to be considered sufficiently 
secure for RSA and ECC. 
 
 

6 Conclusions 
ECC provides greater efficiency than either integer factorization systems or discrete 
logarithm systems, in terms of computational overheads, key sizes, and bandwidth. In 
implementations, these savings mean higher speeds, lower power consumption, and code 
size reductions.  
 
The theory behind ECC is mathematically complex compared to RSA. RSA is a public-key 
system based on integer factorization problem. On the other hand, ECC is a public-key 
system based on elliptic curve discrete logarithm problem, which is much harder than 
integer factorization problem.  Since ECC provides a greater efficiency compared to other 
public-key systems, it is beneficial to learn the mathematical background of ECC.[12]   

 
The use of Maple V has eliminated the problem of using large numbers since Maple V 
supports large numbers which is especially structured for decimal base. Besides, it also can 
do these large computations in reasonable time. Apart from that, Maple V provides a range 
of functions that allows more practical example to stimulate ECC.[11]  
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