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Abstract

Our topic is the use of the cadculator in asssing cdculus students to understand the
Fundamenta Theorem of Cdculus, which dates that if F is the indefinite integrd of f then f is
the deiivaive of F. Although this theorem is important, many Students exhibit little
underganding of it. We present here some activities with caculator (Specidly, the HP48G)
that seems to help students grasp this theorem. Our activities take advantage of the modern
cadculator’s capacity to quickly draw the graph of a given function. For a basc eementary
function, f, the cdculator can find the derivative f° and draw the graph, and can find

(‘;;f (t)dt and draw the graph.

I ntroduction
In order to understand calculus, we have to undersand the Fundamenta Theorem of Calculus
that is an essentid part of caculus. By Fundamental Theorem of Caculus we mean here the

datement that f(X) is the derivative of Qxf (t)dt (there are various equivaent formulations).

This theorem, which relaes the concepts of derivative and definite integrd, is one of the most
important propositions encountered in any calculus course. Y et few students seem able to Sate
the theorem precisely or give an intuitive explanation of it. Perhaps part of the trouble is that
in most courses students promptly become pre-occupied with practicing the various techniques
for producing anti-derivatives of specific functions and do not have much time to think about
the meaning and implications of the Fundamental Theorem. We want students to see that
cdculus is not divided into two digtinct, separate compartments, but that actualy the
Fundamenta Theorem bridges the differentid and the integrd caculus.

We have tried some cdculator-aided activities to illustrate and reinforce the connection
embedded in the Fundamental Theorem. Our hope is that by using acdculator’s built-in
ability for graphing derivatives and indefinite integrds of a given function students will gain an
understanding of how the Fundamenta Theorem works. We describe these activities and
discuss what we have learned from them.

The Teaching and Learning T ool

The caculator we used as the teaching and learning tool in our class is HP48G. One can
ingtruct this calculator to get the derivative of a given function via the instruction Y,= % (v,).
It will lso get a pecdific anti-derivative function, say the anti-derivative vanishing &t the origin,
via the indruction Y,= @XYldx. These capabilities would be built into any of the newer
caculators. Most of our activities are based on the use of these two calculator operations.



The HP48G Cdculator has severa ways to produce the required results.  In our class we
introduce two ways. One is through the ingtructions of Symbolic Function Keys, such asin
the following sequence of pictures.
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The other is usng the Equation Writer Function Key. The Equation Writer produces the step
by step procedures just as we would write on paper.
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The I nver se Relationship—Power Functions

In Activity 1 (see Table 1 below) students do the differentiation and indefinite integration
operaions on power functions. After doing some experimentation and comparison of usng
Symbolic Function Keys and Equation Writer Function Key, they should be able to draw the

: \ x " d&™ o . ,
conclusonthat  Ox"dx = +c and — +ci=x" are inverse operaions of each
n+1 aEn+1’ g

other. From such atable as Table 1 they should infer the inverse relaionship in the following
diagram:

Indefinite Integral Differentiation

%[(‘j (x)dx] = f(X)

Differentiation Indefinite Integral
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Of course, the second diagram is not aways correct except for smple power functions. We

return to this point in alater calculator activity.

Activity 1. Isintegrd the inverse operation of derivative for power functions?

Tablel: The power functions

Function Derivative Undo Integra
y=¢
d_y:y =0
dx
y=Xx+c dy_y =1 Odx =x+c ok =x+c
(07¢
—v?2 S _ 2
S = P =X gac=X vy
y:x3+C d_y:y_3xz (‘)’3x2dxy=X3+C C)XZdXZﬁ"'Cl
dx 3
— R _ 4
y=x-=c¢ d—yzy‘:4x3 Oy =x +c ok =2+ ¢,
dx 4
— uh N n- —on +1

We provide students the above table with certain selected functions and leave the rest of the
table blank. We let them copy down dl the results the HP48G can produce. After the
sudents fill out the blanks by copying the results from the caculator, we hope they can see the
pattern and come up with the proper conclusion for the nth power function.
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The Congtraint

In Activity 2, we extend the condderations of Activity 1 to the other ementary functions.
By applying our caculator operations to one column and comparing results, sudents can
generate strong caculator evidence for the vdidity of Table 2, which illusraes the
Fundamental Theorem for the dementary functions. In some cases, the caculator will exhibit

: : N! . -
an error message.  For instance, in the case of 0;dx , the calculator will exhibit an error

message, such as “LN Error” and “Indefinite Result” if we try to sart the indefinite integration
a 0, as shown below. However, if we Sart the indefinite integration at other numbers like 1
or 2, or even ageneric number a, the calculator gives us the correct answer In( x) - In( a) (as

aso shown below). This gives us a chance to tak about the necessty for the more generd
indfiniteintegra QX f (t)dt and the reason why the denominator can not take the vaue zero

for the function f (t) :%, (or, in generd why as must make sure f has no discontinuities

between aand x, amgor hypothesis of the Fundamenta Theorem).
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Pursuing the integration of 1 further, we can make the point that blind reliance on a
X

cdculator can be mideading. Our caculator actudly gave us an answer for the integra
(‘ildx, namey a recognizable decima approximation of -pi. This is of course,
X

In(2) - In( - 1), consstent with the generd formula In( x) - In(a), but can not be regarded as
areasonable answer for the integration of ared-vaued function.

The Inver se Relationship—Other Functions

In the following activity, we explore functions other than power functions. The caculator can
produce the right answers.  Students can compare the two columns for differentiation and
integration, and try to come up with the same conclusion as for the power function. However,
beside the congtraint we mentioned above, there are other things the students need to think
about. For example, they will ask 1) what am | supposed to do if the caculator does not
have the required keys? and 2) what am | supposed to do when the result from the caculator
is different from my textbook? We use two examples to illudrate sudents questions. The
firs is that because the calculator does not have cotangent key, the students have to use one
over tangent as a subgtitution.
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The second is when the result of reading off the derivative of cotangent from the caculator is
different from the textbook statement. The textbook gives the derivative f cotangent as

) : @+ tan® xo :
- cc“ x, where as the cdculator gives the answer - 277' We use this

tan’x
opportunity to talk about the necessity of learning trigonometry and the trigonometric identities.
The students prove that these two expressions are equd asfollows:

21 06 a&@n?x+cos’x0 a&@in?x cos®x0
—= = - + z=-(l+COt2X)

ésn?xg dn?2x g @dn?x dn2xg

i[cotx] =-csc? X=-
dx

:-gH 1 Qz_aean2x+ 1 9_ _aa+tan2x9
& tan’xg gan’x tan®xy tan’x g
After sudents show the identity of these two expressons, they will understand that the home
-work exercises they did in high school have findly paid off.

Activity 2: Looking for the relationships, isintegration the inverse operation of differentiation?
Table 2:The Elementary Functions and their Operations

Rules Differentiation Integration
Congant Rule i[ax]—a Cpdx =ax +c
dx
Power Rule dr., n-1 X"t
— X" |=nx Adx = +c
dx 6) n+1
Exponentia Rule i[ex] _ o Cpldx=e* +c
dx
Logarithm Rule d 1 N
—|Inx|{== dx =Inx|+c
dx[ ] X O; | |
SneRule i[sinx] ~ cosx C\POSX =sinx+c
dx
CosneRule

j_x[cosx] = _ sinx Cpinxdx = - cosx +c

Tangent Rule i[tanx] - soc’x c‘peczxdx =tanx +c
dx

Cotangent Rule i[cotx] - - cs?x @SCZ xdx = - cotx +c¢
dx

Secant Rule di[secx]:secxtanx (secxtanxdx = secx+c

X

Cosecant Rule d (CSCXcot XdX = - csex + ¢
&[cscx] = - CSCX COtX

ArcsineRule d [arcsinx] 1 L O — arcsinx + ¢
dx 1- x* A1- X2




Continuation: The Elementary Functions and their Operations

Arccosne Rule d 1 L - .
—[arccos x] =- 0 = arcsinx +c¢
dx V1- x2 \1- X2

Arctangent Rule d 1 .

J —[arctan x] = ~ dx _ = arctanx +c

dx 1+ X + X

Arccotangent Rule i[arc cot x] = - 1 5~ X = arccotx+c
dx 1+ x? O

Arcsecant Rule _ 1 . Ox o _
—[arcsecx] = O Zarcsecx +c
dx xx2-1 | xafxE-1

Arccosecant Rule d _ 1 S
—[arccscx]—- O Zarcsecx +c
dx |x|«/x2- 1| xax?-1

The Additive Constant

The additive constant appearing in integration confuses many sudents. Calculator-aided
activities can hdp students understand the role of the additive congtant. As one such, we
discuss our Activity 3 which is finding the congtants of the integration to fill out the table 3.

Let us have our caculator take Y;=f(X) via the operations Y,= f €x) :dif(x) and
X

Ya=1(X) = 6 f&t)dt. When Y, istaken to be X we find that Y; agrees with Y.  When

Y istaken to be x*+1 we find that s no longer agrees with Vi, but is the same shape as Y;
and can be made to coincide with Y, by adding an gppropriate constant. Thus the find part of
this activity isto determine what constant must be added to Y3 in order to get back to Y.
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Table 3 The Additive Congtant
Function Deivdive anti-derivaive Congtant ¢
f(x)=x° (%)= 3x > x 3 c="?

OPxax :3?:x3+c

f(x)=x*+3 NN 3 -2
F09=3x OPxZdx =3X?=x3 +C ©

f(x)=x-3 |f(x)=3x> @xzdx :3X—;=x3 ‘e c=7?

o) =x"+a  |f(x)=3x" 53x2dx:3x_;:x3+c =2




The Same Slope of Different Tangent Lines

We can dso illugtrate by having the calculator draw the tangent lineto Y, at x=1. According as
wetake Y,(X)=X2% or Y, (X )=X?*+1 thistangent line changes, but not its dope. Thus
the pogition of the tangent line at x=1 depends on the additive congtant ¢, but the dope of this
tangent line does not depend on c.
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If the students have strong fedling for the additive congtants, they will be well prepared for the
dope-fidd idea. They can tdl by the shape of the dope-fidd that the differentid equation
embedded here has the cubic function as solution.
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The Graphs of the Fundamental Theorem of Calculus

Activity 4 dso illustrates the Fundamental Theorem by gpplying our two caculator operations
successvely. Except rather than finding the results of differentiation or integration, we find
their graphs. For instance, feed in the function Y, (x) =3x?, and ask the calculator to graph

Y, (¥ = )3 dlt , then ask the calculator to graph Ys%)=Y,' (x). The resuit looks idertical
to Y,(X) =3x*. The caculator has to work hard enough to produce Y; to make the end

result somewhat dramatic. (Actudly, our calculator can graph Y; and Yz( on the same

screen).  Interestingly, the calculator did not give us a formula for Y, (namdy  x*) so that it
gopears in this exercise to be a function defined by its graph. It would be interesting to do

the same activity, but with Yl(x):eX2 (for which actudly there is no dementary
anti-derivative Y,). Unfortunately the HP48G does not have the capacity to graph the
anti-derivativeof Y, (X) = e’

The following pictures are given the function Y, (x) = x*and finding the graph of its derivative
Y,(X) = 3x*. The PLOT function will show the equations for both functions.
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The following pictures are obtained by giving the integration of function Y, (x) = 3x* and
asking the calculator to draw the derivative of theintegration of Y, (x) = 3x°.
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Discussion

The Fundamenta Theorem of Calculus, as we have remarked, unifies calculus by showing that
differentiation and integration are closdy related operaions on functions in that they are
essentidly inverses of each other. The word “essentialy” here hides the role of the additive
arbitrary congtant, a role which is confusng to some students. For one thing, there is some
semantic confudion in the notion of an arbitrary congant. Also, students a this stage of
development are used to problems which have a unique answer. Students tend to forget to
carry dong the additive constant or, more importantly, to understand its importance.

A modern graphing calculator will graph QX f (t)dt when any of the basic dementary function f

is the input (and for any choice of a as long as f is continuous on [a, X]) and adso graphing
cdculators have the capacity to graph f (for any given dementary f. Doing the firg
operation to agiven f (let’s call this operation Ia, for “integration”) and then doing the second
operation (let’s cdl it D) to the result will bring us back to f, suggesting that la and D are
inverse operations (one undoes the other).

However, this of course does not aways work when the operations are done in the other
order. For example, if we ask the caculator to differentiate €, and then integrate the result
with the most naturdl choice of a (namey a=0), we don’'t get back to €, we get €-1. (That
is, lo(D(€))=€" -1). Students can be encouraged to try to understand what is happening here,
and frequently ask questions of their own record. What will happen if we use various other
choices of a? We never get back to € for any choice of a, but we never get graphs which
look much different from €. In fact, it will be clear by graphica evidence that we are dways
getting vertica trandates of €. Thus dthough our operations are not quite inverse the basic
graph is preserved.

Similar exercises can be based on gpplying D and la starting with the function cos x. (Now, of
course, laD brings us back to cos x for a certain choice of a). Of course the concept we want
to get across is that the indefinite integra, or anti-derivetive, is determined only to within an
additive congtant, and that it is important to understand this additive congtant. Technology can
be used to help students at this point.



Modern graphing caculators have the pedagogicaly useful festure of being able to quickly
draw dope fidds for equations

dy
— = X’
™ g(xy)

(g agiven function). It is not hard to show students how to follow a trgectory from a given
initia point, and it becomes clear that the dope field determines a family of curves. When we
specidize by making g a function of x aone, our trgectories become a family of pardle curves.

Thus we associate the indefinite integral with adirection field of the form % =f(x). When
X
dy

we have the caculator draw the direction fidd for, for example, —Z = x?, it is not hard to
X

trace afew trgjectories and see that they are al appear to be vertica trandates of the graph of
y= 3"

Asafurther exercise, one might, for example, ask sudents to graphicdly find a function which
has the same derivative as x* and contains the point (1,2). One could also discuss a few
examples of dope fidds where the function g is not independent of y, such asthe equation

Conclusion

With the help of the graphing caculator, the students seemed to enjoy the class more. They
arived earlier to the classroom in order to get their hands on the graphing calculator.  They
talked to each other about mathematics. They showed other students their works or their
discoveries. They were excited about seeing the graph of a given function in a short while
and dso being able to identify the characterigtics of the graph. Although they did not know
quite well how to compute the derivative or the indefinite integral of a given function, they
knew that these two concepts are inverse operations of each other. Intuitively they could talk
about what we mean by the Fundamental Theorem of Caculus. However, sudents il
wondered what the various congtants were doing in the function. What were their roles in the
learning of Fundamental Theorem of Caculus? With the help of calculator and the exhibition of
the dope-fields, the sudents were findly redlizing the importance of additive constants.

Our experience indicates that these caculator activities described in this paper help students to
understand the Fundamenta Theorem of Cdculus, the concept of families of functions,
integration and the role of the congtants of integration. Further, as we discuss near the end of
the paper, use of caculators gives sudents afirst look at dope fields and differentid equations,
providing some germination time for concepts they will be working with later. According to
the philosophy of the “spird curriculum” it is a good idea to take a first look at important
concepts early in the student’ s devel opment.
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