Solving Approximate GCD of Multivariate Polynomials
By Maple/Matlab/C Combination

Kai Li Lihong Zhi Matu-Tarow Noda
Department of Computer Science

Ehime University, Japan
{likai,1zhi,noda}@hpc.cs.ehime-u.ac.jp

Abstract
This paper introduces an approach based on EZ-GCD algorithm to compute GCD
of multivariate polynomials with floating-point coefficients. We discuss various issues
related to the implementation of the algorithm and present some preliminary test re-
sults.

1 Introduction

The problem of computing approximate GCD of polynomials with inexactly-known coeffi-
cients has been well studied recently [2] [5] [6] [8] [11] [13] [14] [15] . In most of the previous
works, the focus was on finding the approximate GCD of univariate polynomials.

The standard algebraic algorithms for computing GCD of multivariate polynomial with
integer coefficients are based on subresultant polynomial remainder sequence (PRS), or mod-
ular homomorphisms and their inverse mappings. In [5] and [2], subresultant PRS algorithm
and modular algorithms based on Chinese remainder theorem are modified to compute ap-
proximate GCD of multivariate polynomials. Two methods have their own advantages and
disadvantages (see [16]). In [16], an approach that modifies the modular algorithm based
on Hensel construction was proposed and discussed briefly. In this paper, we detail in the
implementation of the algorithm using Maple, Matlab and C.

In section 2, we introduce our notation and describe the standard EZ-GCD algorithm [3].
Substantial modifications to compute GCD of multivariate polynomials are discussed when
the algorithm is extended to polynomials with complex or real number coefficients. In section
3 we describe the design of our package which combines the algorithms in Maple, Matlab and
C. The results from a number of numerical experiments are presented to demonstrate the
efficiency of our package and to show why it is necessary to write some of the algorithms in
Matlab or C instead of using Maple routines. We give summaries and conclusions in section
4.

2 Multivariate GCD

The problem we consider here is: Given two multivariate polynomials F'(z1,---,z,) and
G(z1,-- -, x,) with coefficients of limited accuracy, are there nearby polynomials with a non-
trivial GCD for a given tolerance €? Using notation in [4], we give a formal definition of
approximate GCD.

Definition 1 An empiric polynomial P = (P,¢), with P = Y;c;a;27 € Clz], where x =
(@1, ..., xn), @ € C,J € INg, defines a family of polynomial neighborhoods

_ . P-P
N;s(P,e):={P € C[z] : Hieu <0}, 6>0.
Where || - || denotes the mazimal norm. The polynomials in Ny(P,¢€) will be considered as

indistinguishable.

Definition 2 C € Clz] is a 0-GCD of the empiric polynomials F' and G if there ezist poly-
nomials F' € Ns(F,€) and G € Ns(G,€) such that C is a genuine GCD of F,G. A 1-GCD
s simply called a valid approximate GCD of F and G.

The EZ-GCD algorithm reduces two input polynomials to two univariate polynomials
whose GCD is then lifted back to the multivariate domain using a generalized Newton’s
iteration. It is essential to choose a good evaluation point, discussed later, so that the
homomorphic GCD is relatively prime to one of its cofactors. Now let us concentrate on
Hensel construction. For simplicity, suppose we are given polynomials F(z,y), G (z), and
H©O(z) such that:

F=GYH®® mod y. (1)

Assume we want to lift the two univariate factors to degree n in y. At step k of Hensel lifting,
we want to compute G*)(z,y) and H®)(z,y) such that:

F=G®H® mod ykt! (2)

and
G® = G*Y mod y*, H® = HED mod y*. (3)

For (3) to hold, we set:

G® = GED 4 APk, A
H® = gh-1) 4 APk (4)
where A (1 = 1,2) are univariate polynomials in C[z|. Plugging (4) into (2), we see that
lifting from y* to y**! amounts to solving for the Als in the following univariate Diophantine
equation:

F — G(lcfl)H(kfl)

Yk

If GO (x) and HO(x) are relatively prime, then (5) always has a unique solution which can
(k)

i

= APHO 4 APGO mod y. (5)

be computed by the solutions of ;" for

oM HO 4 oGO = g*, (6)
Suppose

GO (x) = gs7° + 987137871 +--+ 1T+ 90,95 # 0,
HOz) = hat+ 2™+« + hyz + ho, by # 0.

Then (5) is reduced to solving linear algebra equations
M Z=0, (7)

where b is the coefficient vector of polynomial on the left side of (5), Z'is the coefficient vector
of polynomial Agk) (i = 1,2); M is Sylvester matrix of polynomial G and H© i.e.,

[gs g5 o o 1"
gs 9871 . e e PR 0
_ g9s Gs—1 " g1 9o
M=, B0 ®
hy hi 0
I ht hiy -+ hi ho |

If we proceed as in symbolic computation, i.e, solving (6), it is equivalent to compute the
inverse of the matrix M. From the view of numerical computation, it is unstable and also
time consuming to solve linear equations by computing inverse of the matrix. From other
numerical methods such as LU, QR or SVD decomposition [7], we select QR decomposition
as it is easy to exploit the structure of the Sylvester matrix M for an efficient and stable
algorithm. Since the Sylvester matrix M consists of two Toeplitz matrices, if we apply the
Given rotation method to the row 1 and £+ 1 then the row i and ¢+ ¢ for ¢ from 2 to ¢ can be
changed accordingly. So we start the QR decomposition with the Given rotation to eliminate
the elements below the diagonal of the first ¢ columns, and then apply the Householder
transformations to the lowest s X s submatrix (suppose s >=t).

The advantage of combining Given rotations with Householder transformations can be
seen clearly from comparing complexity in the case s =t = n. The flops used in general LU,
QR and SVD decomposition are Z(2n)3, 3(2n)® and 12(2n)3; while using the above strategy,
the flops we used are 6n® + 3n®.

If GO(z) and H®(z) has an approximate GCD, then M will be near rank deficient. So
it is necessary to estimate the condition number of the matrix M before we start the Hensel
lifting. If M is near singular, we have to choose other evaluation points, other main variable,
or even try the squarefree decomposition of the polynomials F' or G.

Another important issue related to Hensel construction is when to stop the Hensel lifting.
In the symbolic computation, the process will stop after k > deg,(F). For example,

F=(z42+y)(z+151/100 + 4y — 24> + *) + n(z + 7)
when 7 = 0:

(x +2)(z +151/100) mod y,

(z +2+y)(x + 151/100 + 4y) mod 32,

(x +2+y)(x + 151/100 + 4y — 2y*) mod 7?,

(x +2+9y)(x +151/100 + 4y — 2y* + y*) mod y*,
(x +2+y)(x +151/100 + 4y — 2y* +y*) mod 7°.

SIS B> B> e >
Il

The lifting from y* to 3® contribute nothing new and both factors remain unchanged. More-
over, the first factor x4 2+ y stays unchanged from the second step onwards. However, in the

floating-point computation case, things are different. Suppose n = ﬁ(rounding to 4 digits):

F = (x+2)(z+1.51) mody,
F = (z+2.+1.002y)(z + 1.51 + 3.998y) mod y?,
F = (z+2.+1.002y + 0.01357y?)
(z + 1.51 + 3.998y — 2.014y*) mod ¥°,
F = (z+2.+1.002y + 0.01357y* + 0.07349¢°)
(z + 1.51 4 3.998y — 2.014y? + 0.9265y%) mod y*,
F = (z+2.+1.002y + 0.01357y* + 0.07349y° + 0.3979y*)
(z + 1.51 + 3.998y — 2.014y> + 0.9265y> — 0.3979y*) mod 3°.

Both factors continue to include terms with high degree w.r.t. y. Although the coefficients
of y? and y? in the first factor are relatively small, the computation becomes more unreliable
when the power of y increase to 4 and 5. So rather than lifting to the full degree w.r.t. y, we
prefer to estimate the degrees of y in the factors, and stop the lifting as soon as one factor
arrives at it. We try to get the full expression of the other factor by solving an overdetermined
linear equation system. For the above example, we let G = x + 2. + 1.002y be a candidate
factor, and suppose another factor be

H=1z+a + ay + asy’ + asy’.

From a comparison of coefficients in F' = G- H we obtain the overdetermined linear equation
system:

o1 0 0 0 ©1.510]
0 1. 0 0 3.998
0 0 1. 0 2.
0 0 0 1. “ 1.
2. 0 0 0 Zz = | 3.02
1.002 2. 0 0 a‘”’ 9.510
0 1.002 2. 0 4 0
0 0 1.002 2. 0

0 0 0 1.002 | 1]

Usually, an overdetermined linear system can be solved using the method of least squares.
But for this example, it is easy to get candidate coefficients a; by solving the upper 4 x 4
submatrix:

H ~ z +1.510 + 3.998y — 2y2 + 1.0y

For given € = 1073, the backward error is:

|F -G - H]

o5 =665,

7’]:

Since 7 is not big, we can simply accept them as candidate factors or try to improve them
by solving a linearized minimization problem as in [16]:

min ||[F - GH — GAH — AGH]||. (9)
AG,AH

Solving it using linear programming, we obtain:

AG = —0.0003385 — 0.002454y;
AH = 0.00004460 + 0.002861y + 0.001910y% — 0.001761y>.

The backward error is

|IF — (G + AG) - (H + AH)||

e =0.22.

3 Comprehensive Environment Construction

From the analysis of the algorithm for computing GCD of polynomials with floating-point
coefficients, it is clear that we need powerful tools to handle several numerical linear algebraic
problems such as solving linear systems, least squares and minimization. Maple V provides
all these facilities but, as we will see from the following tables, it is much more efficient if we
make use of Matlab or C programs.

3.1 Test Results

Table 1: Sylvester Matrix QR(on DEC Alpha)

Js hy Maple QR (s) | Matlab QR (s) | C routine (s)
§=T72 | t=058 7.32 0.0888 0.0234
s=236 | t=18 0.576 0.0039 0.00097
s=41 | t=35 1.53 0.0088 0.0030
§=952 | t=43 2.93 0.0146 0.0059
s=66 | t=40 3.998 0.0205 0.0068
s =88 | t=45 7.749 0.040 0.0137
s =124 |t =101 37.004 0.1688 0.0810
s =168 | t =110 72.295 0.3156 0.1318
s=192 | t =135 119.783 0.5067 0.2362
s =206 |t¢t=153 160.635 0.6507 0.3205

Table 2: Overdetermined linear system solving(on DEC Alpha)

Matrix A(m x n) | Maple (second) | Matlab (second)

9x4 0.027 0.00097
35 X 28 3.206 0.0029
56 x 42 11.747 0.0059
65 x 43 13.520 0.0068
30 x 20 16.653 0.0098
82 x 45 1.073 0.0020
115 x 90 157.683 0.0348
98 x 64 49.329 0.0176
154 x 101 398.048 0.0507
143 x 112 519.882 0.0566

Table 3: Linearized minimization solving(on DEC Alpha)

Matrix A(m x n) | Maple (second) | Matlab (second)

9 x4 1.259 0.1817
30 x 20 72.671 0.5251
35 x 28 114.254 0.6958
43 x 31 384.704 0.9533
56 x 42 1207.040 2.1803
82 x 45 1794.680 4.8994
98 x 64 4471.431 9.1208
116 x 90 18627.066 15.8375
143 x 112 51925.986 29.2890
154 x 101 60720.916 34.2238

So now our problem is how to combine programs in Maple, Matlab and C. There is an
easy-to-use interface between Maple V Release 5 and Matlab. Matlab includes a Maple kernel
to do symbolic processing, and provides a top-level Matlab command (maple()) to execute
Maple function calls. On the other hand, Matlab library can also be invoked within Maple
by entering the command with(Matlab), which let users access all Matlab package function
freely, and can also invoke an individual function using the long form Matlab[function].
Since most computations in our algorithm are done in symbolic way, we implement the
package in Maple and call some functions from Matlab within Maple. For the C program,
since Maple V Release 5 [9] does not provide a direct way to call C in Maple, we link the C
program to Matlab and call it as built-in function of Matlab.

3.2 C Routines Integration

Our implementation creates MEX-files [10], which are dynamically linked subroutines that
the Matlab interpreter treats like Matlab’s own built-in functions. Thus one can call MEX-
files exactly as calling its common function.

The source code for a MEX-file consists of two distinct parts:

1. A C computational routine containing the code for performing the computations that
one wants to implement in the MEX-file.

2. A gateway routine that interfaces the computational routine with Matlab by the entry
point mexFunction and its parameters prhs, nrhs, plhs, nlhs, where prhs is an
array of right-hand input arguments, nrhs is the number of right-hand input arguments,
plhs is an array of left-hand output arguments, and nlhs is the number of left-hand
output arguments, The gateway calls the computational routine as subroutine.

It is necessary to point out that Matlab works with only a single object type: the Matlab
array. In C programming, it is defined as a structure named mxArray. All Matlab variables,
including scalars, vectors, matrices, strings and cell arrays are stored as mxArray type format.
Parameters prhs[] and plhs[] in gateway routine mexFunction are pointers to mxArray,
so variables can be passed between Matlab and C computational routines by calling library
functions such as mxGetPr (prhs[]).

In our computation, the C routine named qr_sylvester.c contains both the computa-
tional routine qr_sylvester() (QR decomposition for Sylvester matrix [12]) and the gateway
routine mexFunction(). It requires 2 parameters as input(nrhs=2), and 2 parameters as its
computing output(nlhs=2). After compiling, the routine can be executed directly within
Matlab just like its build-in function with the command form as:
[q,r]1=qr_sylvester(vi,v2)

In this command, the parameters v1,v2 are declared as Matlab vectors, corresponding
to the coefficients of two given polynomials, and q,r are its output in Matlab data format,
showing the result of QR decomposition.

3.3 Maple/Matlab/C combination

Now it is clear that our comprehensive system for approximate GCD computation of multi-
variate polynomials can be described as:

e Use Maple to perform symbolic computation;

e Invoke Matlab functions from within Maple to perform numerical computations such
as linear programming and least squares.

e Merge C programming application routines qr_sylvester.c, acting as the Sylvester
matrix QR solver, into Matlab being as a plug-in function, so as to be available from
Maple.

4 Conclusion

In this paper, we briefly discuss using Hensel lifting algorithm to compute approximate GCD
of multivariate polynomials in €. A comprehensive environment has been constructed by
Maple/Matlab/C combination for a more efficient algorithm. The method to combine Maple
and Matlab with C routines provides a powerful approach for complicated computation.
The work presented here indicates how to develop more powerful problem solving environ-
ments(PSE) [1] in the future.

References

[1] Elias N. Houstis and John R. Rice.(2000). On the Future of Problem Solving Environ-
ments. http://www.cs.purdue.edu/people/jrr.

[2] Corless, R. M., Gianni, P. M., Trager, G. M. and Watt, S. M.: The singular value
decomposition for polynomial systems, Proc. ISSAC °95, ACM Press, New York, 1995,
195-207.

[3] Geddes, K.O., Czapor, S.R. and Labahn, G.: Algorithms for Computer Algebra, Boston,
Kluwer, 1992.

[4] Huang, Y., Stetter, H. J., Wu, W. and Zhi, L. H.: Pseudofactors of multivariate poly-
nomials, accepted by ISSAC’00.

[6] Noda, M.-T. and Sasaki, T.: Approximate GCD and its application to illconditioned
algebraic equations, J. Comput. Appl. Math., 38(1991), 335-351.

[6] Chin, P., Corless, R. M. and Corliss, G. F.: Optimization strategies for approximate
GCD problem, Proc. ISSAC’98, ACM Press, New York, 1998, 228-235.

[7] Gene H. Golub, Charles F. Van Loan: Matrix Computations, Second Edition. The John
Hopkins University Press, 1989.

[8] Hribernig, V. and Stetter, H.J.: Detection and validation of clusters of polynomial zeros,
J. Symb. Comput., 24(1997), 667-681.

[9] K. M. Heal, M. L. Hansen, K. M. Rockard.: Maple V Programming Guide. Waterloo
Maple Inc.

[10] Matlab Application Program Interface Guide, The MathWorks, Inc.
[11] Schonhage, A.: Quasi-GCD computations, J. Complezity, 1 (1985), 118-137.

[12] Press, W., Flannery, B., Teukolsky, S. and Vetterling, W.: Numerical Recipes: The Art
of Scientific Computation, Cambridge U. Press, Cambridge, 1990.

[13] Beckermann, B. and Labahn, G.: When are two numerical polynomials relatively prime?
J. Symb. Comput., 26(1998), 677-689.

[14] Emiris, I.Z., Galligo, A. and Lombaradi, H.: Certified approximate univariate GCDs, J.
Pure and Applied Algebra, 117 (1997), 229-251.

[15] Karmarkar, N. and Lakshman Y.N.: Approximate polynomial greatest common divisors
and nearest singular polynomials, Proc. ISSAC 96, ACM Press, New York, 1996, 35-39.

[16] L.H.Zhi and M.-T. Noda: Approximate GCD of Multivariate Polynomials. Submitted
to ASCM ’00.

