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Abstract

This paper presents OpenMath servers and their role in an architecture for distributing
mathematical computations. Such an architecture is needed in the context of mathemat-
ical problems whose solution is best achieved by use of techniques from different areas.
We describe such a setting integrating various computational engines. Finally we provide
case studies that illustrate this technology.

1 Introduction

In recent years, the possibility of distributing mathematical computation is becoming a reality
using internet technology. Mathematical problem solving often requires the use of techniques
from different areas, but individual mathematical software packages do not always cover the
methods needed: general purpose packages cover a wide range of basic algorithms whereas most
specialized packages only deal with algorithms applicable in a restricted field. When using the
computer, both in teaching and research, there is a need for implementing a framework where
all computational resources are made available and are fully integrated.

This paper concentrates on the architecture we have implemented to distribute mathemat-
ical computations based on OpenMath servers. The OpenMath standard language provides a
semantically rich representation of mathematics for communicating mathematics between soft-
ware packages [12], in particular it is general enough to allow the integration of computational
and deductive machinery [6]. We describe the architecture and give examples in the context
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of teaching material, e.g. Algebra Interactive! [8], and of research oriented problems. There
are a number of related approaches, several of which use OpenMath [2, 19] in a client-server
setting. Some of these are in the design stage, others restrict the scope of the implementation to
computer algebra software. Our approach has been tested for distributing problems to various
software packages. In fact, it is designed to meet the requirements of a future general agreement
on the protocol to be used for mathematical servers (e.g. IAMC, kqml, OpenXM). For exam-
ple, problems on the borderline of group theory and linear algebra can be tackled using, say,
the group theory package GAP and the general purpose package Maple. In interactive teaching
material, like a basic algebra course covering number theory, polynomials and groups, various
topics depend for computational aspects on the use of different back engines.

The implemented architecture is based on OpenMath servers on a network able to provide
mathematical services on OpenMath objects. A client in charge of solving a problem accesses
these servers with specific computational requests understood by the different packages to which
the servers interface. Before the request is sent to the server, the OpenMath objects involved
in it are translated to the appropriate syntax and package-syntax is used for the dispatched
command. The answer received is translated back into an OpenMath object which is returned
to the client.

The paper is structured as follows. Section 2 very briefly recalls the basics of the OpenMath
language. OpenMath Servers are described in Section 3 where in particular Phrasebooks play
an important role. Section 4 reports on the available Java software that can be used to
implement OpenMath servers. Three case studies on distributing mathematical computations
among OpenMath servers are shown in Section 5. A concluding section contains the final
discussion.

2 OpenMath

The OpenMath standard language [12] provides a semantically rich representation of mathe-
matical information for electronic access and usage. Here we limit the exposition on OpenMath
to some examples of mathematical objects that occur later in the paper. The reader is referred
to the standard documents available from [20] for the details.

Algebraic structures, like the polynomial ring Zp[X], are representable as OpenMath ab-
stract objects using application objects like:

application(polyr:PolynomialRingR, application(setname2:Zm, p), x) (1)

OpenMath Content Dictionaries (cd) collect and provide definitions of mathematical notions
for usage within OpenMath applications. The official repository for cds is [20]. The OpenMath
symbols in the object above that identify the polynomial ring structure obtained from the
integers modulo p are polyr:PolynomialRingR and setname2:Zm. More precisely, they are the
symbols called PolynomialRingR and Zm defined in the cds polyr and setname2, respectively.



A polynomial in this ring, say f = X3 − X + 1, can be represented in several ways as an
abstract OpenMath object, for instance by using the polyr:PolynomialR constructor for re-
cursive polynomials. As with all OpenMath objects, it can be encoded in a human-readable
format using xml [13] and stored as:

<OMOBJ><OMA><OMS cd="polyr" name="PolynomialR"/>

<OMA><OMS cd="polyr" name="PolynomialRingR"/>
<OMA><OMS cd="setname2" name="Zm"/><OMV name="p"></OMA>
<OMV name="x"/>

</OMA>
<OMA><OMS cd="polyr" name="PolyRrep"/>

<OMV name="x"/>
<OMA><OMS cd="polyr" name="monomial"/><OMI> 3 </OMI><OMI> 1 </OMI></OMA>
<OMA><OMS cd="polyr" name="monomial"/><OMI> 1 </OMI><OMI> -1 </OMI></OMA>
<OMA><OMS cd="polyr" name="monomial"/><OMI> 0 </OMI><OMI> 1 </OMI></OMA>

</OMA>
</OMA>

</OMOBJ>

In this example, the outermost xml element <OMOBJ> encloses nested OpenMath application
objects, appearing within the element <OMA>, which are built using OpenMath symbols (<OMS>),
OpenMath variables (<OMV>), and integers (<OMI>). Notice that the application object high-
lighted by the box is essentially the xml encoding of the polynomial ring expressed abstractly
in (1).

3 OpenMath Servers

In this section we define what we mean by OpenMath server as contrasted to a generic math-
ematical server interfaced to a single back-engine. Essentially the difference lies in the usage
of OpenMath to facilitate mathematical computations possibly using a combination of several
back-engines.

3.1 Mathematical Servers

In this paper, mathematical servers refer to servers handling requests invoking computational
aspects of a mathematical nature, e.g. symbolic integration or proof verification. There is yet
no standard accepted protocol for mathematical servers; some of the commercial packages have
started to provide custom ways of turning their software into a mathematical server. The
approach taken here is independent of the package acting as back-engine. This is common to
other efforts such as the internet accessible mathematical protocol by P. Wang [19]. Agent
technology using the Knowledge Query Manipulation Language kqml is also used in designing
intelligent networks of mathematical servers in which the user need not be aware of which
mathematical server performs the request.
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Figure 1: OpenMath Mathematical Server

3.2 OpenMath Phrasebooks

In this section we concentrate on OpenMath servers of which one vital ingredient is the Open-
Math Phrasebook. Phrasebooks are programs that interface the back-engines to the client via
OpenMath, as shown in Figure 1. The definition of Phrasebook in the OpenMath standard is
informal. Here, because of the applications we have in mind, we need a more precise description
of a Phrasebook.

The Phrasebooks we designed are defined in terms of a 4-tuple: a list of cds, control
information, interpretation, and communication.

OpenMath-compliancy requires that a Phrasebook declares the list of cds it recognizes.
Control information, e.g. EVAL, SIMPLIFY, PROVE, SOLVE, PRINT, expresses the tasks

that the Phrasebook is able to perform. This aspect falls outside the definition of Phrasebooks
in the OpenMath standard where the default task is assumed to be evaluation (EVAL) as is
customary in computer algebra software. For our purposes, since we want to use also back-
engines which are capable of carrying out a variety of tasks, the control information needs to
be explicitly available.

Interpretation refers to what is going to be done to the objects using the back-engines. In-
terpretation is a function of the control information and the received OpenMath objects. Some
recent formalized approaches on how to specify mathematical services provided by OpenMath
Phrasebooks are found in [2].

Finally, the Phrasebook specifies how the actual communication between the software pack-
age and the OpenMath computer environment is achieved. In our experiments we have used
tcp/ip communication. In general, the Phrasebook implementor is free to choose any commu-
nication protocol.

Although a Phrasebook can only function properly if it is specified in some detail, there is as
yet no guarantee that the actual implementation of the Phrasebook conforms to its specification.

As a first example, consider a client submitting the request to solve the equation x2 = 2



over R to an OpenMath server powered by a Phrasebook specified by the 4-tuple consisting of:

cds arith1, relation1, . . .
Control Information SOLVE
Interpretation [SOLVE, application(relation1:eq, A)] = B

where B is a real solution of the given equation
Communication Maple:mathweb.org:4217,

Mathematica:localhost:4126,
PoSSo:posso.dm.unipi.it:4564

Upon input, which includes a choice of task to be performed, the Phrasebook invokes the
module for encoding the expression as OpenMath object. This module also takes care of
decoding an OpenMath object into a system-specific syntax. It is called codec and depends
on the list of cds for its translation (e.g. it might encounter a symbol not defined in its list of
cds).

If all goes well, an OpenMath object is produced by the codec. For the equation at hand,
the OpenMath object is

application(relation1:eq, application(arith1:power, x, 2), 2) (2)

The Phrasebook decides, following the specification given by the interpretation, which action
to take on the OpenMath object. In case of ambiguous requests, that is several equivalent
actions could be taken, user-intervention can be required to choose the desired action. So as-
sume that the action is known and thus also the back-engines which are to be used for the
computation. The Phrasebook prepares the queries for the selected back-engines by using the
interpretation for distributing the computations. In simple cases, the control information cor-
responds directly to a single query (certain user-commands) in a single back-engine. In general
however, the Phrasebook is able to extract from the control information and the OpenMath ob-
ject an algorithm that splits up the problem and distributes the solving process among several
back-engines. See for instance the architecture of the primality proof generator Phrasebook
that uses both proof checker Coq and GAP [7]. The queries sent to the back-engines consists
of expressions in the back-engine syntax. These are produced in part by calling the codec’s
decoder on the relevant OpenMath fragments. Communication happens at the shell interface of
the various back-engines because this is the easier solution for turning third-party software into
a server in absence of ad-hoc solutions, e.g. most software packages do not provide a callable
library of functions. In some special cases, proprietary tools can be used for setting up the
communication, e.g. JLink/MathLink for Mathematica. The Phrasebook assembles the results
it has received and produces OpenMath output from them. This output is displayed/sold to
the user in a suitable form.



3.3 Architecture

A possible architecture to realize the process described in the previous paragraph needs a few
more ingredients that take care of input and output. We base our examples on the usage of
browsers for accessing the computational resources. In that case, Java applets and/or servlets
are a convenient means of implementing the graphical user interface. Figure 2 depicts the
general scheme.
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Figure 2: Exemplary Architecture

A web page describes the problem and includes input fields. The user may enter the data
in a format selected among several options (e.g. GAP or Maple syntax). If the input fields are
given in an html form handled via a servlet, then the input data is processed and translated
by a Java program into the suitable process call understood by the OpenMath Phrasebook.
The process call must specify the control information expected by the Phrasebook and the
input data in terms of OpenMath objects. A menu-based graphical interface can be used to
enumerate choices or data examples.

The servlet also receives the output from the Phrasebook and is in charge of producing a
document to present the result. In general this document is an html document containing
calls to the rendering engine for displaying the mathematical fragments it contains. The next
generation of browsers is expected to be able to natively support MathML-presentation, thus
making a separate rendering engine superfluous.

4 OpenMath Java Software

Internet technology is often realized in Java. Because the architecture outlined in the previous
section is internet-based, we have developed Phrasebooks and OpenMath servers using Java.
This approach is not uncommon, to wit an interface based on OpenMath to various packages for
computer algebra has been put forward within the CATHODE project [3] and a web interface
to Maple’s visualization capabilities has been worked out by [14].



Official OpenMath libraries are distributed by the OpenMath Society. Best known are the
Naomi (OpenMath) Java library by the PolyMath Development Group [17] and the Java and
C libraries by INRIA [11]. The libraries provide classes to manipulate OpenMath objects in
the xml and the binary encoding. Additionally, the libraries include encoders and decoders
to/from arithmetical expressions written in Mathematica or Maple syntax. Similar translation
features exist for various other languages, for instance for MathML [4], and for LATEX [9].

For the software developments described in the next section, we have written Java classes
for the Phrasebooks implementing the architecture described above [15]. The client-server com-
munication is tcp/ip based. These Phrasebooks are easily extended to suit specific demands.
Furthermore, we have added some new codecs to the ones distributed with the Naomi library.
They translate the syntax of the proof checkers Lego and Coq, and of the computer algebra
packages Mathematica and GAP.

5 Case Studies

Algebra courses provide typical examples where at present no single computer algebra package
supports all computational aspects without programming efforts on the side of the user (in-
structor). Topics ranging from arithmetic to (polynomial) rings to (symmetry) groups are best
supported by distinct packages. Although packages tend to extend their scope, thus possibly
resolving the need for distinct packages in a given specific setting, developments within math-
ematics may establish links between seemingly unrelated fields, whence creating situations for
which probably no single package is readily available. For example, the new field of Algebraic
Statistics [16], in which Gröbner basis methods play a role in the design of experiments, links
two subjects hitherto far apart in the mathematical spectrum. Hence, Algebraic Statistics is a
natural place for combining back-engines from the fields of algebra and statistics. In the fol-
lowing subsections we describe in more detail a few instances where distributing mathematical
computations can be used.

5.1 Teaching with Algebra Interactive!

Algebra Interactive! [8] is interactive course material for first and second year university algebra.
It covers basic arithmetic, modular arithmetic, polynomials, arithmetic modulo a polynomial,
permutations, monoids and groups, rings and fields, and permutation groups. It comes on a
CD-rom with an accompanying book; it is viewed through a browser and contains extra navi-
gation tools in addition to the standard navigation options. The material is enlivened by Java

applets and so-called gapplets. Java applets provide many dynamic illustrations with a strong
visual aspect as well as calculators pertaining to the relevant material. Gapplets are applets
that interface to the computer algebra package GAP [10] and provide illustrations of compu-
tational aspects in input/output form. GAP specifically aims at group theory computations
and is therefore not the natural choice for other topics covered. Currently, a second edition of



Algebra Interactive! [8] is under construction that interfaces to more (freeware) back-engines,
viz. CoCoA [5] and GAP at present, that belong more naturally to the individual chapters.

The following is an example where the chapters on arithmetic modulo polynomials and on
permutations overlap, but where the corresponding back-engines differ: CoCoA for polynomial
computations and GAP for the group theory computations. Consider an irreducible polynomial
f ∈ Zp[X] of degree n, where Zp denotes the field with p elements, p prime. Then the ring
F = Zp[X]/(f) is a finite field with pn elements. If a ∈ F is an invertible element, then
multiplication by a determines a permutation σa : F → F of the finite set F. To study the
group theory aspects of such permutations, it is natural to transport them to GAP, being a
back-engine better suited for dealing with permutations. For instance, questions like: what is
the order of σa?, or: what type of group is generated by permutations of the form σb, with
b running through a set of invertible elements?, can be easily solved by GAP. Conversely, to
find an invertible element realizing a given permutation (and deciding if this is possible at all)
requires a computation better suited for CoCoA. In Section 2 we have shown examples of how
the relevant objects are represented in OpenMath.

Experimental OpenMath cds, called permut1, group1, and permgrp, for representing per-
mutations and group theoretical notions are available from the OpenMath website [20]. The
OpenMath Phrasebook supporting the interaction needed to solve this kind of problem handles
questions regarding polynomials by calling CoCoA or Maple (for instance the generation of
the pn elements in F) and questions regarding permutations by GAP.

5.2 Algebraic Statistics with CoCoA and R

In the following we outline a set-up where both algebraic and statistical methods are ingredients
in dealing with design of experiment. The basic problem is to identify a model explaining certain
data associated to a finite (fractional factorial) design F , given as a subset of some Qn. Any
function on F can be described as the function associated to a (not unique) polynomial. Finding
a model is then redirected into a problem concerning polynomials. Gröbner bases can be used
to determine a set S of monomials (the ‘support’) out of which a polynomial supporting a model
is to be constructed. Given such a set of monomials, there may be reasons from statistics to
actually construct the model using a subset of S. For example, higher order interactions, like
terms of the form XmY n with exponents m,n ≥ 2, are sometimes omitted since they may lack
statistical meaning. Finally, to identify the ‘best possible’ model for the given data set and
with the support just constructed, a regression method from statistics is invoked.

For the sake of brevity, we omit other subtle considerations in this case study and focus on
the heart of the matter.

This set-up leads to the following. The first item refers to computations in the realm of
algebra, and can be done naturally in software packages handling polynomial arithmetic. For
our experiments we have chosen CoCoA [5] since it has some of the relevant algorithms readily
available. The second item is of a statistical nature and requires the use of a statistical package.
We have used the freely available software R [1].



Start with a finite design F = {P1, P2, . . . , Pm} ⊂ Qn, and with a data set. These are stored
as OpenMath object representing a matrix of integers (the cd linalg2 provides the symbols
for doing it) and an array of OpenMath floating point numbers.

• Choose a term order σ and compute the associated standard set of power products Pσ(F)
using, e.g. the Buchberger-Möller algorithm (see [16]). In CoCoA this amounts to first
using the function IdealOfPoints on the appropriate translation of the finite design
and then selecting the proper monomials. Since selection of the monomials has to be
programmed ad hoc, it could be carried out as well in a different computer algebra
system.

• Suitable regression methods construct a model out of the Pσ(F) and the data set. Any
statistical package dealing with regression is suitable for such an analysis.

Figure 3: Statistics and Computer Algebra

Figure 3 is a screenshot of our experiments in connecting OpenMath servers for solving
problems in statistical design of experiments with the aid of algebraic methods. The user is
prompted to input the dimension n, the number of points m, the set of points and the data
set. By selecting from a menu, it is then possible to request an algebraic computation, for
instance one that returns the monomials to be used in the construction of the fitting model.



Having obtained this estimate (in the screenshot this is what appears after “Est:” in the
output window), the user can try to use it for fitting the data set. The menu allows to select
general linear regression fitting by the option glm. This choice triggers the setup of a statistical
computation request built from the input data and from the algebraic result obtained in a
previous algebraic computation. The statistical package then receives a call in the proper
syntax. Notice in particular that the codecs used in the OpenMath Phrasebook take care of
producing the different syntax needed for CoCoA and for R when using the data set of points
or the monomials.

5.3 Pure Mathematical Research with LiE and GAP

In the software package LiE [18], elements of a simple complex Lie group are given (up to
conjugacy) by means of numerical data. For instance, [1, 0, 2] would describe an element of
order two in a group of Lie rank two. By means of an interface to the software package GAP,
we can turn this data in to a ‘real life’ element of the Lie group, for instance in its realization
as a group of automorphisms of the corresponding Lie algebra. For, in GAP, the complex
simple Lie algebras have been implemented by Willem de Graaf and their automorphisms are
linear transformations of the underlying vector space. So, after feeding the vector of integers
describing an element of finite order from LiE to GAP, an easy function in GAP will produce the
automorphism as a linear transformation, and its matrix or further relevant data regarding the
automorphism could be fed back to LiE. This is just one step in the process of describing the
finite (Lie primitive) subgroups of the Lie groups of exceptional type; the research of describing
all such subgroups has been completed (up to conjugacy questions), but the subgroups are not
yet readily available on computer.

6 Concluding Remarks

This paper describes the details of the technology and the architecture we are currently de-
veloping to distribute mathematical computations. This work is heavily based on OpenMath
servers built around the OpenMath standard language and the OpenMath Phrasebooks. Be-
cause OpenMath provides a semantically rich representation of mathematics, it can be safely
used for communicating mathematics between software packages. In particular, it is general
enough to allow the integration of software from various areas of computational mathematics
as we have demonstrated by the case studies shown in this paper.

Acknowledgments. The authors would like to thank Eva Riccomagno for some clarifications on
Algebraic Statistics.
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