
Expanding Spreadsheet Calculations
Jozef Hvorecky

Higher Colleges of Technology
Abu Dhabi, United Arab Emirates

&
College of Management

Bratislava, Slovakia
Jozef.Hvorecky@hct.ac.ae

Ivan Trencansky
University of Economics

Bratislava, Slovakia
ivo@euba.sk

Abstract
Inserting a cell between existing ones belongs among elementary spreadsheet operations. The

newly inserted cell is empty. One can specify its content by introducing a constant or a formula into
it. The formula usually expresses the cell value as a function of values of its neighbors. When all the
referred values are known, the formula is calculated and its result is displayed. Since then, it can be
used in next calculations.

In the calculations described in this paper, single cells (or entire rows or entire columns or
their combinations, depending on the aim) and their contents are inserted by macros. The values
evaluated in the previous steps serve as a basis for next ones. The range of spreadsheet used for the
calculation spreads automatically, giving a new esprit to the notion of “spreadsheet”.

The same method can be used for many purposes. Here we apply it to drawing graphs of one-
and two-dimensional functions and of fractals. The expansion generates graphs with higher and
higher precision.

If spreadsheets would have an infinite size, the calculation could spread indefinitely. In
reality, there are limits that are also demonstrated in our contribution.

1 Basic Notions

Spreadsheet programs are tools for (pseudo) parallel computations over large groups of
numbers. The numbers are located in a sheet – a matrix with rows and columns. The elements of
the matrix are called cells.

Theoretically, the numbers of rows and columns are both unlimited. Naturally, each real
software product has these numbers exactly specified. As we show below this fact has an important
impact on some computations.

Spreadsheet calculations use various operations. The most frequent ones are [1]:

• Initialization of cells, i.e., assigning initial values into them.

• Definition of relationships between the initialized cells and selected ones.

• Spreading the relationships throughout the sheet.
The range occupied by such calculations is usually fixed. However, there are operations

allowing its expansion. The one discussed in our paper is the insertion.

The application of an insertion generates a new cell in the sheet. Naturally, the specification
of its position by pointing into a place in a spreadsheet is ambiguous. Programmers must also
indicate whether the new cell belongs to the particular column or to the row. Only then, the existing
cells are shifted in the required direction creating a vacant cell. (Note that insertions do not harm the
contents of already existing cells.) In a similar way, one can insert entire columns and rows. Again,
the existing cells move to the required direction and their contents remain unchanged.

As newly inserted cells are empty, their content should be specified by introducing a constant
or a formula into them. As usual, the formula expresses the cell value as a function of values of its
close neighbors. If the values of the referred cells are known, the formula is calculated and its result
is displayed1. The resulting value can instantly be used in following calculations.

Below, we demonstrate drawing graphs using series of insertions. In the beginning, just a few
cells are initialized so the graph does not display the function properly. To improve its shape, we
use macros to insert new cells between existing ones. In each step at least one new point is inserted.
As the result, the graph quality constantly improves. The process is repeated until the precision is
sufficient or the capacity of the spreadsheet program is exceeded. The method can in fact be used in
any spreadsheet environment. Our examples have been made in Microsoft Excel.

2 Inserting Cells

We exemplify using the insertion of individual cells on improved drawings of a one-
dimensional function.

 In the „standard method“ of representing one-dimensional functions, the values of the x
variable are stored in one column, the function values in the next one. As the number of cells in
both columns is identical, the discussed range always forms a rectangle with a varying number of
rows and two columns. Its minimum size is 2 x 2 as we need at least two values to specify the
interval in which the function is drawn.

The program starts with specifying the (two or more) initial values and the function. Then, it
spreads automatically. In each stage, pairs of cells (in the same row) are inserted between any two
existing rows inside the range. The following formulas are inserted into them:

1. The value of the independent variable (i.e. that one in the left column) is determined as the
middle of the interval specified by its neighbors in the same column:
Selection.Formula = "= (r[-1]c[0] + r[1]c[0])/2"

2. The drawn function is then copied from its (upper or lower) neighbor:
Cells(i+1, 2).Select

Selection.Copy

Cells(i, 2).Select

1 If the formula refers to cells with unspecified values or to cells with wrong data type, an error message is presented.

ActiveSheet.Paste

(Here the formula is copied from the lower neighbor).

Note that each cell must be individually selected (as a 1 x 1 range) before the formula insertion.

The order of the insertions is important, because all values must be specified before their use:

• The values of the neighboring cells in the first column allow computing the middle one.

-1.5

-1

-0.5

0

0.5

1

1.5

-6.283185307 3.141592654

Figure 1 a. The cos(x) function defined in 2 points

-1.5

-1

-0.5

0

0.5

1

1.5

-6.283185307 -3.926990817 -1.570796327 0.785398163 3.141592654

Figure 1 b. The same function defined in 5 points

-1.5

-1

-0.5

0

0.5

1

1.5

-6.283185307 -5.105088062 -3.926990817 -2.748893572 -1.570796327 -0.392699082 0.785398163 1.963495408 3.141592654

Figure 1 c. The same function defined in 9 points

• When this new value is known, its functional value can safely be calculated.
The cells are always shifted down. To make the loop simple and efficient, we start inserting

from the bottom of the current range. The Visual Basic loop has the form
for i = No_Of_Existing_Rows to 2 step -1

Range(Cells(i,1), Cells(i,2)).Select

Selection.Insert shift:=xlDown

Cells(i, 1).Select

Selection.FormulaR1C1 = "=(r[-1]c[0] + r[+1]c[0])/2"

Cells(i+1, 2).Select

Selection.Copy

Cells(i, 2).Select

ActiveSheet.Paste

No_Of_Existing_Rows = No_Of_Existing_Rows + 1

next i

 Inside the loop, the new lines are inserted before the active (i.e., i-th) row, because the value
of the independent variable can only be computed when its preceding and following values are
known. Thus, the last insertion is done for the second row. Each loop increases the number of
existing rows by one2. When starting with 2 rows, their number grows as

2, 3, 5, 9, 17, ..., 2n + 1, ...
where n is the number of complete executions of the above loop. Selected first steps of the
approximation of cos(x) in the interval (-2π, π) are shown in Figure 1.

3 Inserting Columns and Rows

A similar approach can be used for
drawing two-dimensional functions. The main
difference is that we now insert rows and
columns instead of individual cells.

The calculation starts in a 3 x 3 range. The
first row and the first column are constantly
occupied by the values of independent variables
x and y. So, the active (expanding) area used for
the function F(x, y) goes from the row 2 to No_Of_Existing_Rows + 1 and from the column 2 to
No_Of_Existing_Columns + 1. Figure 2 shows the location of the values in the simplest case. The
factual numbers of existing rows and columns of the expansion area are both equal to two.

The expansion is executed in a similar way:

2 The change of the No_Of_Existing_Rows variable (the last command of the loop body) does not affect the number of

the loop repetitions. Its value is used in calculating the loop control variable only once – during its initialization.
So, it can be safely changed inside the loop and used again when the loop is entered for the next time.

 A B C
1 y1 y2
2 x1 F(x1 , y1) F(x1 , y2)
3 x2 F(x2 , y1) F(x2 , y2)

Figure 2 Positioning first four function
values

for i = No_Of_Existing_Rows + 1 to 3 step -1

Rows(i).Select

Selection.Insert shift:=xlDown

Cells(i, 1).Select

Selection.FormulaR1C1 = "=(r[-1]c[0] + r[+1]c[0])/2"

Cells(2, 2).Select

Selection.Copy

Range(Cells(i, 2), Cells(i, No_Of_Existing_Columns + 1)).Select

ActiveSheet.Paste

No_Of_Existing_Rows = No_Of_Existing_Rows + 1

next i

for j = No_Of_Existing_Columns + 1 to 3 step -1

Columns(j).Select

Selection.Insert shift:=xlRight

Cells(1, j).Select

Selection.FormulaR1C1 = "=(r[0]c[-1] + r[0]c[+1])/2"

Cells(2, 2).Select

Selection.Copy

Range(Cells(2, j), Cells(No_Of_Existing_Rows + 1, j)).Select

ActiveSheet.Paste

No_Of_Existing_Columns = No_Of_Existing_Columns + 1

next j

The both sides of the expanded area grow with the same speed

2, 3, 5, 9, 17, ..., 2n + 1, ...
So, the consecutive areas occupy

22, 32, 52, 92, 172, ..., (2n + 1)2, ...

sheet cells. The first four approximations of the graph of the cos(x).sin(x) function for x ∈ [-π, π]
and y ∈ [-π, π] are shown in Figure 3.

Figure 3 a. The cos(x)sin(y) function defined in 4 points

Figure 3 b. The cos(x)sin(y) function defined in 9 points

Figure 3c The cos(x)sin(y) function defined in 25 points

Figure 3d The cos(x)sin(y) function defined in 49 points

4 Complex expansions

The previous expansions have been simple:

1. The formulas inserted to the new cells are identical.

2. Standard methods of graph presentation have been used: A vector holds the functional values of
a one-dimensional function, a rectangular array is used for a two-dimensional one.

3. The insertion points are evenly distributed – always in the middle of the interval.

As a result of this simplicity, identical approximations can be used for each (and any) one- and two-
dimensional function in any specified interval. Now we demonstrate a more complex example. We
will create fractal curves consisting of linear sections.

The number of points inserted between existing pairs is one of fractal‘s properties. Also, the
formulas describing individual linear sections may be different. As a result, the fractal descriptions
differ from case to case. On the other hand, there is one important similarity with the previous
cases: As we are drawing curves, we use their „vector representation“ and insert groups of cells.

In the below example we create Pythagoras Tree – a fractal based on his well/known theorem.
The fractal starts with a square. In the first expansion a right-angle triangle is placed on its top side
with two smaller squares on its sides containing the right angle – Figure 4a. This implies that:

a) The new points of the curve are not inserted between each existing pair. Only the one side of
each square is expanded.

b) An entire pattern (with eight new points) is then inserted.

To simplify the insertion we keep the „shape of the fractal“ in a separate sheet named Pattern. Each
of the ending points of its linear sections is encoded as a triple: its x and y coordinates plus the
information whether or not to insert new points before it3.

The critical section of the program has the form of the nested loop. The outer loop expands
the existing fractal („point by point“). If a new complete element of the fractal is to be inserted, the
inner loop executes that. The lengths of its sides are then calculated from the pattern and positions
of the ending point of the line that is replaced by the fractal.
for j = No_Of_Exist_Cells to 2 step -1

if Cells(j, 3) <> -1 then

Range(Cells(j, 1), Cells(j + Fractal_Size - 1, 3)).Select

Selection.Insert shift:=xlDown

for i = 1 to Fractal_Size

Cells(j + i - 1, 1).Select

Selection.FormulaR1C1 = "=r[-" + CStr(i) + "]c+(r[" +
CStr(Fractal_Size - i + 1) + "]c-r[-" + CStr(i) + "]c)*"
+ Pattern + "!r" + CStr(i) + "c1-(r[" + CStr(Fractal_Size - i + 1)
+ "]c[1]-r[-" + CStr(i) + "]c[1])*" + Pattern + "!r" + CStr(i) +
"c2"

Cells(j + i - 1, 2).Select

Selection.FormulaR1C1 = "=r[-" + CStr(i) + "]c+(r[" +

3 For reading the program is necessary to know that zero means „to insert“, minus one „not to insert“.

CStr(Fractal_Size - i + 1) + "]c-r[-" + CStr(i) + "]c)*"
+ Pattern + "!r" + CStr(i) + "c1+(r[" + CStr(Fractal_Size - i + 1)
+ "]c[-1]-r[-" + CStr(i) + "]c[-1])*" + Pattern + "!r" + CStr(i) +
"c2"

Cells(j + i - 1, 3).Select

Selection.FormulaR1C1 = "=" + Pattern + "!r" + CStr(i) + "c3"

next i

Cells(j + Fractal_Size, 3).Select

Selection.FormulaR1C1 = "=" + Pattern + "!r" + CStr(i) + "c3"

No_Of_Exist_Cells = No_Of_Exist_Cells + Fractal_Size

end if

next j

The number of rows occupied by the fractals can be determined in the following way:

a) Five points (occupying five rows) define the original square.

b) During each expansion we add two squares at the top side of each square that is not covered by
a triangle. Each modification requires computing of four of its points (the fifth is identical with
one of existing ones). Because all existing lines remain and some new are added, the number of
points forming the curve grows

5

5 + (2 x 4) = 5 + 23

5 + (2 x 4) + (22 x 4) = 5 + 23 + 24

5 + (2 x 4) + (22 x 4) + (23 x 4) = 5 + 23 + 24 + 25
…

5 + 23 + 24 + 25+ … + 2n+2 = 5 + 23x (1 + 2 + 22 + 23 + … + 2n-2) =

 = 5 + 23x (2n-1 – 1) ≈ 2n+2

Discussion

In each of the above cases, the growth of the area used for the calculation is exponential. It
implies that the range in which the calculation is executed expands extremely quickly. As the
professional spreadsheet products contain much less columns than rows in their sheets (e.g.,
Microsoft Excel has 256 columns and 16 384 rows [2]), the width of the sheet is quickly exceeded.
As one can derive from the formula in the end of Section 2, no more than seven approximations of
two-dimensional functions can be completed. As a result, quality drawing is sufficient only for
smooth functions.

On the other hand, this example nicely demonstrates limits of numerical mathematics. Real
calculations must be done in real environments. Not all environments are equally apt for all
calculations. Similar analyses can explain and exemplify differences between them to students.

Figure 4 a. Pythagoras Tree after its first expansion

Figure 4 b. Pythagoras Tree after its second expansion

Figure 4 c. Pythagoras Tree after its third expansion

References

1. J. Hvorecky, I. Trencansky: Recursive Computations in Spreadsheets. Wei-Chi Yang,
Kiyoshi Shirayanagi, Sung-Chi Chu, Gary Fitz-Gerald (Editors): Proceedings of the Third Asian
Technology Conference in Mathematics. Springer, Tokyo, 1998, pp. 290-298.

2. Microsoft Excel User’s Guide. Microsoft Press, 1998

3. Sivertsen, P.: L'usage d'un tableur dans l'enseignement des mathematiques. Zborník
bratislavského seminára z teórie vyucovania matematiky, Bratislava 1999, pp. 91-99

