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Abstract 
Inserting a cell between existing ones belongs among elementary spreadsheet operations. The 

newly inserted cell is empty. One can specify its content by introducing a constant or a formula into 
it. The formula usually expresses the cell value as a function of values of its neighbors. When all the 
referred values are known, the formula is calculated and its result is displayed. Since then, it can be 
used in next calculations. 

In the calculations described in this paper, single cells (or entire rows or entire columns or 
their combinations, depending on the aim) and their contents are inserted by macros. The values 
evaluated in the previous steps serve as a basis for next ones. The range of spreadsheet used for the 
calculation spreads automatically, giving a new esprit to the notion of “spreadsheet”.  

The same method can be used for many purposes. Here we apply it to drawing graphs of one- 
and two-dimensional functions and of fractals. The expansion generates graphs with higher and 
higher precision. 

If spreadsheets would have an infinite size, the calculation could spread indefinitely. In 
reality, there are limits that are also demonstrated in our contribution. 

1 Basic Notions 

Spreadsheet programs are tools for (pseudo) parallel computations over large groups of 
numbers. The numbers are located in a sheet – a matrix with rows and columns. The elements of 
the matrix are called cells. 

Theoretically, the numbers of rows and columns are both unlimited. Naturally, each real 
software product has these numbers exactly specified. As we show below this fact has an important 
impact on some computations. 

Spreadsheet calculations use various operations. The most frequent ones are [1]: 

• Initialization of cells, i.e., assigning initial values into them. 



• Definition of relationships between the initialized cells and selected ones. 

• Spreading the relationships throughout the sheet. 
The range occupied by such calculations is usually fixed. However, there are operations 

allowing its expansion. The one discussed in our paper is the insertion. 

The application of an insertion generates a new cell in the sheet. Naturally, the specification 
of its position by pointing into a place in a spreadsheet is ambiguous. Programmers must also 
indicate whether the new cell belongs to the particular column or to the row. Only then, the existing 
cells are shifted in the required direction creating a vacant cell. (Note that insertions do not harm the 
contents of already existing cells.) In a similar way, one can insert entire columns and rows. Again, 
the existing cells move to the required direction and their contents remain unchanged. 

As newly inserted cells are empty, their content should be specified by introducing a constant 
or a formula into them. As usual, the formula expresses the cell value as a function of values of its 
close neighbors. If the values of the referred cells are known, the formula is calculated and its result 
is displayed1. The resulting value can instantly be used in following calculations. 

Below, we demonstrate drawing graphs using series of insertions. In the beginning, just a few 
cells are initialized so the graph does not display the function properly. To improve its shape, we 
use macros to insert new cells between existing ones. In each step at least one new point is inserted. 
As the result, the graph quality constantly improves. The process is repeated until the precision is 
sufficient or the capacity of the spreadsheet program is exceeded. The method can in fact be used in 
any spreadsheet environment. Our examples have been made in Microsoft Excel. 

2 Inserting Cells 

We exemplify using the insertion of individual cells on improved drawings of a one-
dimensional function. 

 In the „standard method“ of representing one-dimensional functions, the values of the x 
variable are stored in one column, the function values in the next one. As the number of cells in 
both columns is identical, the discussed range always forms a rectangle with a varying number of 
rows and two columns. Its minimum size is 2 x 2 as we need at least two values to specify the 
interval in which the function is drawn. 

The program starts with specifying the (two or more) initial values and the function. Then, it 
spreads automatically. In each stage, pairs of cells (in the same row) are inserted between any two 
existing rows inside the range. The following formulas are inserted into them: 

1. The value of the independent variable (i.e. that one in the left column) is determined as the 
middle of the interval specified by its neighbors in the same column: 
Selection.Formula = "= (r[-1]c[0] + r[1]c[0])/2" 

2. The drawn function is then copied from its (upper or lower) neighbor: 
Cells(i+1, 2).Select 

Selection.Copy 

Cells(i, 2).Select 

                                                 
1 If the formula refers to cells with unspecified values or to cells with wrong data type, an error message is presented. 



ActiveSheet.Paste 

(Here the formula is copied from the lower neighbor). 

Note that each cell must be individually selected (as a 1 x 1 range) before the formula insertion. 

The order of the insertions is important, because all values must be specified before their use: 

• The values of the neighboring cells in the first column allow computing the middle one. 
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Figure 1 a. The cos(x) function defined in 2 points 
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Figure 1 b. The same function defined in 5 points 
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Figure 1 c. The same function defined in 9 points 



• When this new value is known, its functional value can safely be calculated. 
The cells are always shifted down. To make the loop simple and efficient, we start inserting 

from the bottom of the current range. The Visual Basic loop has the form 
for i = No_Of_Existing_Rows to 2 step -1 

Range(Cells(i,1), Cells(i,2)).Select 

Selection.Insert shift:=xlDown 

Cells(i, 1).Select 

Selection.FormulaR1C1 = "=(r[-1]c[0] + r[+1]c[0])/2" 

Cells(i+1, 2).Select 

Selection.Copy 

Cells(i, 2).Select 

ActiveSheet.Paste 

No_Of_Existing_Rows = No_Of_Existing_Rows + 1 

next i 

 Inside the loop, the new lines are inserted before the active (i.e., i-th) row, because the value 
of the independent variable can only be computed when its preceding and following values are 
known. Thus, the last insertion is done for the second row. Each loop increases the number of 
existing rows by one2. When starting with 2 rows, their number grows as 

2, 3, 5, 9, 17, ..., 2n + 1, ... 
where n is the number of complete executions of the above loop. Selected first steps of the 
approximation of cos(x) in the interval (-2π, π) are shown in Figure 1. 

3 Inserting Columns and Rows 

A similar approach can be used for 
drawing two-dimensional functions. The main 
difference is that we now insert rows and 
columns instead of individual cells. 

The calculation starts in a 3 x 3 range. The 
first row and the first column are constantly 
occupied by the values of independent variables 
x and y. So, the active (expanding) area used for 
the function F(x, y) goes from the row 2 to No_Of_Existing_Rows + 1 and from the column 2 to 
No_Of_Existing_Columns + 1. Figure 2 shows the location of the values in the simplest case. The 
factual numbers of existing rows and columns of the expansion area are both equal to two. 

The expansion is executed in a similar way: 

                                                 
2 The change of the No_Of_Existing_Rows variable (the last command of the loop body) does not affect the number of 

the loop repetitions. Its value is used in calculating the loop control variable only once – during its initialization. 
So, it can be safely changed inside the loop and used again when the loop is entered for the next time. 

 A B C 
1  y1 y2 
2 x1 F(x1 , y1) F(x1 , y2)
3 x2 F(x2 , y1) F(x2 , y2)

Figure 2 Positioning first four function 
values



for i = No_Of_Existing_Rows + 1 to 3 step -1 

Rows(i).Select 

Selection.Insert shift:=xlDown 

Cells(i, 1).Select 

Selection.FormulaR1C1 = "=(r[-1]c[0] + r[+1]c[0])/2" 

 

Cells(2, 2).Select 

Selection.Copy 

Range(Cells(i, 2), Cells(i, No_Of_Existing_Columns + 1)).Select 

ActiveSheet.Paste 

 

No_Of_Existing_Rows  = No_Of_Existing_Rows + 1 

next i 

for j = No_Of_Existing_Columns + 1 to 3 step -1 

Columns(j).Select 

Selection.Insert shift:=xlRight 

Cells(1, j).Select 

Selection.FormulaR1C1 = "=(r[0]c[-1] + r[0]c[+1])/2" 

 

Cells(2, 2).Select 

Selection.Copy 

Range(Cells(2, j), Cells(No_Of_Existing_Rows + 1, j)).Select 

ActiveSheet.Paste 

 

No_Of_Existing_Columns = No_Of_Existing_Columns + 1 

next j 

The both sides of the expanded area grow with the same speed 

2, 3, 5, 9, 17, ..., 2n + 1, ... 
So, the consecutive areas occupy 

22, 32, 52, 92, 172, ..., (2n + 1)2, ... 

sheet cells. The first four approximations of the graph of the cos(x).sin(x) function for x ∈ [-π, π] 
and y ∈ [-π, π] are shown in Figure 3. 



 

 
Figure 3 a. The cos(x)sin(y) function defined in 4 points  

 
Figure 3 b. The cos(x)sin(y) function defined in 9 points 

 
Figure 3c The cos(x)sin(y) function defined in 25 points 

 
Figure 3d The cos(x)sin(y) function defined in 49 points 



4 Complex expansions 

The previous expansions have been simple: 

1. The formulas inserted to the new cells are identical. 

2. Standard methods of graph presentation have been used: A vector holds the functional values of 
a one-dimensional function, a rectangular array is used for a two-dimensional one. 

3. The insertion points are evenly distributed – always in the middle of the interval. 

As a result of this simplicity, identical approximations can be used for each (and any) one- and two-
dimensional function in any specified interval. Now we demonstrate a more complex example. We 
will create fractal curves consisting of linear sections. 

The number of points inserted between existing pairs is one of fractal‘s properties. Also, the 
formulas describing individual linear sections may be different. As a result, the fractal descriptions 
differ from case to case. On the other hand, there is one important similarity with the previous 
cases: As we are drawing curves, we use their „vector representation“ and insert groups of cells. 

In the below example we create Pythagoras Tree – a fractal based on his well/known theorem. 
The fractal starts with a square. In the first expansion a right-angle triangle is placed on its top side 
with two smaller squares on its sides containing the right angle  – Figure 4a. This implies that: 

a) The new points of the curve are not inserted between each existing pair. Only the one side of 
each square is expanded. 

b) An entire pattern (with eight new points) is then inserted. 

To simplify the insertion we keep the „shape of the fractal“ in a separate sheet named Pattern. Each 
of the ending points of its linear sections is encoded as a triple: its x and y coordinates plus the 
information whether or not to insert new points before it3.  

The critical section of the program has the form of the nested loop. The outer loop expands 
the existing fractal („point by point“). If a new complete element of the fractal is to be inserted, the 
inner loop executes that. The lengths of its sides are then calculated from the pattern and positions 
of the ending point of the line that is replaced by the fractal. 
for j = No_Of_Exist_Cells to 2 step -1 

if Cells(j, 3) <> -1 then 

Range(Cells(j, 1), Cells(j + Fractal_Size - 1, 3)).Select 

Selection.Insert shift:=xlDown 

for i = 1 to Fractal_Size 

Cells(j + i - 1, 1).Select 

Selection.FormulaR1C1 = "=r[-" + CStr(i) + "]c+(r[" +  
CStr(Fractal_Size - i + 1) + "]c-r[-" + CStr(i) + "]c)*"  
+ Pattern + "!r" + CStr(i) + "c1-(r[" + CStr(Fractal_Size - i + 1) 
+ "]c[1]-r[-" + CStr(i) + "]c[1])*" + Pattern + "!r" + CStr(i) +  
"c2" 

Cells(j + i - 1, 2).Select 

Selection.FormulaR1C1 = "=r[-" + CStr(i) + "]c+(r[" + 

                                                 
3 For reading the program is necessary to know that zero means „to insert“, minus one „not to insert“. 



CStr(Fractal_Size - i + 1) + "]c-r[-" + CStr(i) + "]c)*"  
+ Pattern + "!r" + CStr(i) + "c1+(r[" + CStr(Fractal_Size - i + 1) 
+ "]c[-1]-r[-" + CStr(i) + "]c[-1])*" + Pattern + "!r" + CStr(i) + 
"c2" 

Cells(j + i - 1, 3).Select 

Selection.FormulaR1C1 = "=" + Pattern + "!r" + CStr(i) + "c3" 

next i 

Cells(j + Fractal_Size, 3).Select 

Selection.FormulaR1C1 = "=" + Pattern + "!r" + CStr(i) + "c3" 

No_Of_Exist_Cells = No_Of_Exist_Cells + Fractal_Size 

end if 

next j 

The number of rows occupied by the fractals can be determined in the following way: 

a) Five points (occupying five rows) define the original square. 

b) During each expansion we add two squares at the top side of each square that is not covered by 
a triangle. Each modification requires computing of four of its points (the fifth is identical with 
one of existing ones). Because all existing lines remain and some new are added, the number of 
points forming the curve grows 

5 

5 + (2 x 4) = 5 + 23 

5 + (2 x 4) + (22 x 4) = 5 + 23 + 24 

5 + (2 x 4) + (22 x 4) + (23 x 4) = 5 + 23 + 24 + 25 
… 

5 + 23 + 24 + 25+ … + 2n+2 = 5 + 23x (1 + 2 + 22 + 23 + … + 2n-2) =  

 = 5 + 23x (2n-1 – 1) ≈ 2n+2 

Discussion 

In each of the above cases, the growth of the area used for the calculation is exponential. It 
implies that the range in which the calculation is executed expands extremely quickly. As the 
professional spreadsheet products contain much less columns than rows in their sheets (e.g., 
Microsoft Excel has 256 columns and 16 384 rows [2]), the width of the sheet is quickly exceeded. 
As one can derive from the formula in the end of Section 2, no more than seven approximations of 
two-dimensional functions can be completed. As a result, quality drawing is sufficient only for 
smooth functions. 

On the other hand, this example nicely demonstrates limits of numerical mathematics. Real 
calculations must be done in real environments. Not all environments are equally apt for all 
calculations. Similar analyses can explain and exemplify differences between them to students. 



 

 
Figure 4 a. Pythagoras Tree after its first expansion  

 
Figure 4 b. Pythagoras Tree after its second expansion 

 
Figure 4 c. Pythagoras Tree after its third expansion 



References 

1. J. Hvorecky, I. Trencansky: Recursive Computations in Spreadsheets. Wei-Chi Yang, 
Kiyoshi Shirayanagi, Sung-Chi Chu, Gary Fitz-Gerald (Editors): Proceedings of the Third Asian 
Technology Conference in Mathematics. Springer, Tokyo, 1998, pp. 290-298. 

2. Microsoft Excel User’s Guide. Microsoft Press, 1998 

3. Sivertsen, P.: L'usage d'un tableur dans l'enseignement des mathematiques. Zborník 
bratislavského seminára z teórie vyucovania matematiky, Bratislava 1999, pp. 91-99 

 


