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Abstract

The advent of technology in the form of powerful calculators and computer algebra
systems brought with it the promise of enormous change in the mathematics curriculum
at the secondary and lower tertiary levels. There was the idea that, now that the diffi-
cult time-consuming graphing and calculation could be done by the calculator /computer,
teachers could fit in so much more ‘real mathematics’. In fact, the range of topics covered
has not changed significantly. One reason for this is the need to spend time teaching
students the judicious use of this powerful new technology. This is needed to combat
the very real danger that students will happily accept whatever answers the technology
gives them, which in many cases could be totally incorrect. The reasons for these wrong
answers are many and varied. The easiest to cope with is when the message ERROR (or
its equivalent) appears as a prompt. But what should the student do when a seemingly
correct answer is produced? Our experience is that students will just accept the given
answer. In this paper we use the computer algebra system Scientific Notebook v.53.5 to
illustrate some of the common pitfalls that arise in both teaching and assessment and
discuss measures to avoid and/or redress these.

1 Introduction

The availability and accessibility of (now quite sophisticated) hand-held graphics calculators
and user-friendly computer-algebra packages has had a large impact on the teaching of mathe-
matics. At the lower secondary level it is usually the graphics calculator that is used, whereas
at the tertiary level, both calculators and computer packages are widespread. Applications in
which the computations were previously considered too difficult to be taken as examples in
teaching and/or assessment are now commonplace. However, it should be appreciated that
some care needs to be taken in introducing students to this technology and some effort needs
to be made in teaching them how to use the technology correctly and effectively. Similar senti-
ments were expressed by Andrews ([2]). Dion ([3]) posed the conjecture that the successful use
of calculators requires a higher level of understanding than that required for rote computation
or template problem solving. This has certainly been our experience, and it applies to the use
of computer software as well as the calculator.



In this paper we discuss a range of examples illustrating some of the problems that arise
when technology is used blindly by students carrying out mathematical calculations. Obvious
ones are simple data entry and round-off errors, although the latter can be quite subtle. Less
easy to detect are the errors that arise from the internal implementation of the particular
algebra system used by the calculator or computer package itself.

We give illustrations here with examples from Scientific Notebook v.3.5, which is a rel-
atively inexpensive combined word-processing and computer algebra system, operating with
both Maple and MuPad computation engines. Technical details can be found on the Scien-
tific Notebook website (http://scinotebook.tcisoft.com), where one can download a free 30-day
time-locked version of the package. Scientific Notebook is easy to use and students are able to
become familiar with this package in a very short time. In our case we found that one workshop
was sufficient to enable students to be well on the way to becoming independent users. The
user-friendly aspect is particularly important to us since, at both Edith Cowan and Murdoch
universities, the majority of our students are studying mathematics as a service subject, with
no intention of progressing on to mathematical research.

There will of course be corresponding examples for any of the many available calculating
and graphing devices. We distinguish these problems from examples of student misconceptions
of the questions asked and misinterpretation of the output provided, some of which are given
by Mueller and Forster ([6]) for graphics calculators used under examination conditions.

Anderson et al ([1]) drew attention to some specific pitfalls in the use of Scientific Notebook
v.3.0 to solve differential equations. Some of these, none of which was mentioned by Majewski
([5]) or Wilkin ([7]) in their reviews of this package, could arise simply by carelessness on
the part of the user while others need to be attended to by the software writers themselves.
Examples in the latter category include inconsistency in the interpretation of brackets and
providing an incorrect solution to a particular initial value problem.

In this paper we illustrate some of the difficulties encountered due to naive technology use.
These examples, with the exception of Section 3.2 below, have arisen in the course of our first
and second year university calculus classes.

2 Round-off error

2.1 Calculation of eigenvalues
2.1.1 Exact versus numeric

The following example is quite simple, but many students in a recent class failed to notice the
problem. They were asked to find the eigenvalues of the matrix

-02 0 0.2
02 —-04 O
0 04 —-0.2



Using Scientific Notebook, COMPUTE, MATRICES, EIGENVALUES students obtained the
following:

—.666 67
eigenvectors : | —.33333 | < 1.9859 x 1019,
—.666 67

[ — 86769 —4.1968 x 1072 |
—4.1968 x 1072 + .86769i | < —.4 + .21,
90966 — .82572i

[ — 86769 4+ 4.1968 x 1072 |
—4.1968 x 1072 — 86769i | < —.4 — .2
.909 66 + .82572i

and didn’t recognize (for example) that 1.9859 x 107! might have been 0. However, if they
had written the matrix as

~1/5 0 1/5
1/5 —2/5 0
0 2/5 -—1/5

then they would have obtained
2 i 1 —1i
eigenvectors: | 1 | < 0, 1 — —=+ =1, 1 o —= — gz

2 —1—3

which is much more illuminating.

2.1.2 Displayed digits versus digits used in computation

In this example we consider the matrix

4
1

Tt O =
— W N

-1

Then COMPUTE, MATRICES, CHARACTERISTIC POLYNOMIAL (together with evalu-
ating the zeros) with the default of 10 digits used in computations and 5 digits in display
gives
X3 —3X?-34X +18=0
Solution is : {X = —4.8231},{X = .51034} ,{X = 7.3128} .

For the eigenvalue 0.510 34 we would naturally expect

1 2 4 1 00
det 6 3 1 | —-051034|0 1 O =0
5 1 —1 0 01



But actually computing this gives

1 2 4 1 00
det | |6 3 1 |—051034]0 1 0 =—1573 x 107"
5 1 -1 0 01
whereas changing the default setting to display 10 digits leads to
1 2 4 1 00
det 6 3 1 | —0.5103404336| 0 1 O =1.0x107"
5 1 —1 001

even though the number of digits for computation is unchanged. In each case the student needs
to recognize the answer as being 0.

2.2 Graph plotting

The plots of the parametric equations = = sint™, y = cost™ where ¢t € [0,27) and n = 1,2,3, ...
should all be identical to that shown in Figure 1 for the case n = 1. With Scientific Notebook
this does not happen, as shown by the plot for the case n = 4 in Figure 2 where already a good
deal of the interior of the circle is shaded.

0.5 0 05
-0.5

sint, cost sint*, cos t*

Figure 1 Figure 2

With round-off and sampling error we are in fact obtaining points where the sum of the squares
of the coordinates is less than 1, and this worsens as the powers increase. In the above we are
using the default settings, and in fact the filling-in disappears to some extent when a larger
number of sample points is taken and a larger number of digits used in computations is selected.
However, it is not possible to overcome this completely.

2.3 Zeros of functions

Another instance of round-off error which can really mislead students is illustrated by the
following example. Consider the solutions of the equation

(2 = 1) Inz = 0.01

Following the HELP menu for Scientific Notebook the student would enter COMPUTE, SOLVE,
EXACT and obtain z = 1.0707. There is in fact another solution, which can be found by
applying COMPUTE, SOLVE, NUMERIC to

(2 —1)Inz —0.01 =0
x € [0,1]



to obtain z = 0.9293 (to 4 decimal places). The latter procedure can also be used to find the
first solution, by replacing [0, 1] by [1,2]. (Of course with this approach the solutions need to
be isolated from the outset.) Now these are the only two solutions, and they appear to be
symmetric about 1. But appearances can be deceptive! Setting the number of digits used in
both computation and display to 10 we obtain 1.070 696 935 and 0.929 305 153 respectively, and
these are clearly not symmetric about z = 1.

There are two interesting aspects of this calculation. Firstly, the two different zeros are not
being returned by the first method, which may lead the student to believe that there is just
a single zero. (Even if the student tries the second approach, with [0, 2] replacing [0, 1], still
only the smaller zero is returned.) And secondly, which is peculiar to this particular example,
there is the need to set a large number of decimal places to dispel the idea that the zeros are
symmetric about 1.

Furthermore, by plotting the function h(z) = (2 — 1)Inz — 0.001 and changing the scale
appropriately, it again appears (see Figure 3) as though A is symmetric about 1. However if we
try a different approach and plot j () = h(1 + z) — h(1 — x) to obtain the graph in Figure 4
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then the fact that the zero function is not obtained confirms the lack of symmetry of h about
rz=1.

3 Programming faults

3.1 Reduced row echelon form of a matrix

Finding the reduced row echelon form of a matrix should be straightforward. For example

1 2 1 0
{2 2],rowechelonform. {0 1]

and with the variable a replacing the (1,2)-entry,

1 a 10
{2 2],rowechelonf0rm.{0 1].

But this doesn’t always hold, as can be seen by putting a = 1,

11 11
{2 2},rowechelonf0rm.{0 O}'



Most students would be puzzled about what is going on here, but it becomes clearer when the
algebra is tracked.

1 a 1 a 1a—a§:§2 1 0
22| 710 2-2¢| |0 2 101

2—2a

which is only valid for a # 1. But when simply applying the COMPUTE command all this is
hidden, and if the matrix is a little larger and more complicated (a 3 x 3 matrix will do) then
it might not even occur to the user just what has happened.

In general, this would be very difficult for most students to even recognize much less un-
derstand. For all but the best students the instructor can only alert the students that with
any algebraic manipulation there are invariably singular cases that the computer package is
unlikely to incorporate.

3.2 Calculations with polynomials

The Cartier polynomials P(n,x) arise naturally in the study of random walks on polynomial
trees. Indexing them by the parameter v € (0, %] they can be written as

Pln,z) = (m(l—Qv)—i— x2—47—|—472> (m+\/x2—4fy(1—fy)>n+

24/ 22 — 4y + 42 2(1—7)

- (—w(1—2v)+ x2—47+472> (fﬂ—\/ﬂ72—47(1_7)>n

2+/x2 — 4y + 4?2 2(1—17)

To evaluate P"(n,1) at v = % consider the following three expressions arising in an analysis of
these polynomials:

4(=1)" (=147) "y 4 6 (—1)" (<1 4y) Ty

1
S(n)=————=7 —2ny —8(=1)" (=1 4+ )" ¥ 0 4+ 12n7* — n— ;
(2v-1) Sn~3 2 242 2 2
—8nvy’ — 4ny + 4n*y* + n° + 6y — 67
r-— [ 2(15) " (Gren) (24 an) 128 e
(-9 et

Now using COMPUTE, CHECK EQUALITY we obtain the output
R(n),S(n) is true
and

S (n),T (n) is true



which just says that

But notwithstanding all of this the computer package gives the obscure

lim S (n) = signum (1—e(=1)") oo

’Y"‘

even though it gives correctly

1 1 1
lim R (n) = ——n*+-nt=-nf(n—1)(n+1) = lim 7" (n) .
'y~>— 3 3 3 ’y~>—

The problem here is that the program is not coping with these calculations, but of course most
students encountering an ‘undefined’ limit as in the calculation for lim,_ 1 S (n) would take
this answer at face value. On the other hand, if the package had returned undec1ded’ then the
student could have been alerted to the potential problem.

4 Display of the graph of a function

It is important that students do not simply enter the formula for a function and accept blindly
the graphical display produced. Here we consider an example that shows how the student can
be seriously misled at various steps in the argument.

4.1 f(z)=sinyz —1

Entering the formula and using PLOT 2D, RECTANGULAR on Scientific Notebook produces
the graph in Figure 5. This uses the default settings of the Plot Properties Dialog Box. In
this the default Plot Components settings are Domain Interval [-5,5] and sample size 49. The
former provides the largest interval on which the program will compute values of the given
function and the latter determines the number of values calculated, and hence the detail of the
plot. The default View setting for the horizontal axis is [-5,5], with automatic scaling provided
for the vertical axis.
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Note that from the graph shown in Figure 5 the function appears not to be defined at x=1,
and the periodicity is not evident, nor is it suggested that the function might take any negative



values. However, a student who realizes that sine is a periodic function with range [-1,1] might
change to Domain Interval [0,100] and the horizontal View Interval [0,100] to obtain the graph
in Figure 6. The function still appears undefined at x=1. An attempt to view the periodicity
more clearly might cause the student to change to Domain Interval [0,500], and horizontal View
Interval [0,500], thus obtaining the graph in Figure 7. The shape is now quite different and does
appear to give a value of 0 at x=1. However, now there is the problem that the graph seems
to start with a section below the horizontal axis, and a naive user would then start to wonder
just which was the graph of this function.
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Some mathematical investigation would favour the graph in Figure 6 and it might be thought
that the problem around x = 1 was caused by a lack of detail in the actual plot. However, a
change to Sample Size 999 (the maximum allowed by the package) produces the graph in Figure
8, which is even more confusing. A change to Domain Interval [0,100], horizontal View Interval
[0,100] and Sample Size 999 together with some adjustment of the tick marks on the axes gives
the graph in Figure 9. There is once again a problem at x=1. This can be overcome by making
the single change to Domain Interval [1,100], to obtain the (accurate) graph in Figure 10.
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An example such as this can seriously undermine the student’s confidence in the use of this
technology, so it is essential to have some strategy in place to deal with this when such problems
arise. One way students can attempt to combat the problem illustrated in Figure 5, where the
effective domain of definition is simply too small to give an accurate idea of the full graph, is
to always change from the default domain and view intervals to much larger domain and view
intervals and see what effect this has on the graph. It may then be necessary to choose a larger
sample size to obtain an accurate plot.

This approach will often be effective, particularly when graphing polynomial functions. For
example, consider the function z° 4 3z* — 39223 — 25222 + 17392z 4 32640. The default settings



give the plot in Figure 11, whereas resetting to a domain interval of [-50, 50] and view intervals
[-25, 25] and [-500 000, 500 000] on the horizontal and vertical axes respectively gives the plot
in Figure 12.
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However, this strategy is not a general panacea. For example, the default plot of tan(x) is
shown in Figure 13. In this case, a change in the vertical View Interval to [-2, 2] will produce
the improvement shown in Figure 14.

In the final analysis there is no substitution for some mathematical sophistication. Gold-
enberg ([4]) goes even further, with the view that thoughtless use of computer graphing in the
classroom may actually obscure what we are trying to teach.
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5 Conclusions

We have shown here that, although the technology now available is a very powerful and valuable
tool for teaching and learning, teaching time needs to be taken for students to learn how to
use the chosen calculator/computer package appropriately, and indeed this technology must be
combined with mathematical knowledge for really effective use. There are, as we have shown,
many traps for the unwary and the unskilled. However, for the skilled user the advent of modern
calculator/computer technology opens up a wide vista of exciting possibilities for mathematics
teaching, learning and research. The benefits to be had more than justify the initial effort
involved.

There are those who wish to limit student use of technology on the grounds that they will
just use it blindly. It is the responsibility of mathematics educators to help students to become
intelligent users of the available tools, not to prevent their use. This means we have to teach
our students both the mathematics and the use of the technology.
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