
Maple as a Tool for Selfstudy and Evaluation

N. Van den Bergh (norbert.vandenbergh@rug.ac.be)
T. Kolokolnikov (theodore.kolokolnikov@rug.ac.be)

Faculty of Applied Sciences
University of Ghent, Belgium

Abstract

We report on the results obtained so far within the framework of the ALICE-project at the
University of Ghent. ALICE self-study modules in linear algebra, calculus and theoretical mechanics
have been in use for over four years at our institute. Each module consists of a collection of Maple
worksheets, containing theoretical materials, worked-out examples and exercises. For exercises which
require symbolic answers or in which the verification of the answers involves complex mathematical
operations, the use of a computer algebra package is an indispensable tool. A typical such question is to

compute a basis for the vector space of all trace-free 2x2 matrices. Both
(

1 0
0 −1

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)

and
(

1 1
1 −1

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
, (as well as infinitely many other choices) are correct answers.

Grading this question requires therefore type conversion and some elementary linear algebra operations
- things that Maple is good at. For automated delivery and evaluation of such exercises a fast and
powerful web-server was developed, the Alice Interactive Mathematics (AIM) server. Its distinguishing
features are the use of Maple as the engine and implementation language; versatility in question and
quiz design, including the randomization of quizzes and questions; its visualization of mathematical
formulae (without using GIF-images); the speed with which individual quizzes are generated; various
feedback mechanisms; its facilities for giving partial credits; extensive grade reporting and monitoring
capabilities; ability to collect surveys and the use of a web interface for both teacher and student.

1 Maple as a tool for self-study

In October 1996 the ALICE (Active Learning in a Computer Environment) project was launched at
the University of Ghent. The target was a relatively small group of students (about 30 annually)
entering the engineering faculty after one to four years of technical education, or after some years of
experience in the industry. In contrast to the main body of about 300 engineering students annually
entering the faculty, these students are technically well skilled, but have had little contact with ab-
stract mathematics during the last years of their education and need some form of remedial teaching.
To make matters worse, the students involved usually follow a compressed curriculum, enabling them
in principle to complete their studies in two to four years, rather than the customary five years. The
resulting very tight class schedule or (in some cases) also the students’ ongoing professional occupa-
tions make it then impossible for them to attend the lectures and/or exercise classes.

For many years the main difficulty in the first term was the linear algebra course, which by the
majority of these students was experienced as being highly ‘abstract’. Therefore it was decided to

develop a linear algebra package (a) which is suitable for selfstudy, (b) which contains material for
self-evaluation and (c) which covers the same topics as the standard lectures, but offers these in a less
abstract way, by putting more emphasis on examples and illustration of the main ideas, rather than
on the replication of proofs.

It was decided to write the whole package as a collection of hyperlinked Maple worksheets. This
choice was directly motivated by the fact that our institute was about to acquire a Maple (at that
time Release 4) campus license, enabling us to distribute the main ‘carrier’ software to all students,
for use on all platforms. In addition it was felt that a computer algebra system like Maple was best
suited to fulfill all our needs at the same time: nicely formatted text and graphics output could be
combined with ‘hands-on’ open exercises and self-evaluation ‘tests’, the possibilities of which went
far beyond those of traditional educational packages, where usually only a literal comparison is made
between a student’s answer and a collection of standard answers.

No matter what the quality of a selfstudy package is, the main motivation of a student for using
it is directly proportional to the marks that are to be gained with it. Therefore monthly evaluation
sessions were organized in a small computer-lab, with each session taking one and a half hour per
student, enabling the students to obtain a maximum of 8 out of 20 marks. During the evaluations 3 to
4 exercises were to be solved, whereby the students could use whatever tools they deemed necessary
(full access to the Maple library, the course modules and the lecture notes was permitted). At the
end of the term a traditional examination followed: two theoretical questions and one more ‘abstract’
exercise made up for the 12 remaining marks.

The pilot group of students had no previous knowledge of Maple and also did not receive any
introduction to Maple. Although in the selfstudy package the use of the necessary Maple commands
was built up very gradually, some students complained about the big overhead of having to learn all
the necessary Maple commands for this single course. The results nevertheless were very encouraging
and the students reacted very positively to this mode of teaching. They ‘liked’ to do linear algebra
in this way (sic!) and a comparison with examination results of previous years indicated a definite
improvement. Most remarkable was the fact that the main group of first year students (who were not
using the package at that time) appeared to obtain lower marks for the ‘abstract’ exercises (which
were identical for both groups)!

These results stimulated us to introduce the package also to the full group of engineering stu-
dents. Financial support to carry out this program, in a collaboration with the Free University of
Brussels (Belgium) and The University of Birmingham (U.K.) was obtained and at the moment we
have developed Maple V Release 5 and Maple 6 modules for linear algebra, theoretical mechanics
and calculus. Each module consists of hyperlinked worksheets, divided into sections which begin with
some explanatory text and with the main body consisting of worked out Maple examples and directed
exercises.

The linear algebra modules cover the topics sets, relations and functions, groups, rings and fields,
complex numbers, polynomial rings, vector spaces, matrices (elementary matrices, blockmatrices,
normal forms, LU-factorisation), dot product (Gram-Schmidt process, inner product spaces), linear
transformations, change of basis, unitary and orthogonal matrices, systems of linear equations, de-
terminants, eigenvalues and eigenvectors, minimal polynomial, Cayley-Hamilton theorem, diagonable
matrices, Schur’s lemma, normal matrices, symmetric bilinear forms and quadratic forms.

The theoretical mechanics modules cover the topics vector calculus, curvilinear coordinates, speed

and acceleration, moving frames of reference, intrinsic coordinates, relative kinematics, force and mo-
mentum, equations of motion, kinetic and potential energy, Lagrange formalism and small oscillations.

The calculus modules cover the topics real numbers, sequences, Cauchy’s criteria, Bolzano - Weier-
strass theorem, functions, limits and continuity, differential equations, scalar and vector fields, vector
calculus, line integrals, surface integrals, volume integrals and the theorems of Green, Stokes and
Gauss.

Up to the academic year 1999-2000 the selfstudy packages were being used by the main group
on a voluntary basis, with about one third of the students claiming that they had made extensive
use of the package. Recently it was decided to go one step further in the integration of selfstudy
and computer algebra into the curriculum. From this year onwards about half of the exercise classes
for linear algebra and theoretical mechanics and all calculus exercise classes are being conducted in
PC-labs: these classes take place under staff-supervision and participation is meaningful only after
having gone through the corresponding sections with worked-out exercises in the selfstudy modules.

As the usage of the PC-labs (three labs of 25 computers each) by the different departments of
our faculty is growing fast, from this year onwards the first year student’s Maple classes have to be
restricted to two half days per week. Dealing with a group of 300 students and allowing for each stu-
dent about two hours of Maple exercises per week, this forces us to seat two students per computer.
Aside from the obvious advantage of halving herewith the necessary amount of staff time, we hope
that this measure will result in educational advantages too. In fact the previous years have shown
us that —with one student per computer— a students’s lack of progress in an exercise class is often
caused by rather elementary forms of ‘computer illiteracy’ and not by his or her lack of understanding
of the course material. As a consequence a large amount of staff time during the PC-labs has been
spend so far on helping students with the ‘wrong’ kind of difficulties.

The weekly sessions are also meant to make the student familiar with the procedures which will
prevail at the final exam (4 PC-labs will then be used). The marking scheme for the exam will be
identical to that of the pilot-group, with the Maple exercises counting for 40% of the total marks.

2 Maple as a tool for evaluation

2.1 Why a computer algebra system?

An essential part of any selfstudy package is a system for giving feedback to the student, for example
through the automatic administering of graded tests. For exercises which require symbolic answers
or in which the verification of the answers involves complex mathematical operations, the use of a
computer algebra package is an indispensable tool. A typical such question in a linear algebra course

is to compute a basis for the vector space of all trace-free 2x2 matrices. Both
(

1 0
0 −1

)
,

(
0 1
0 0

)
,(

0 0
1 0

)
and

(
1 1
1 −1

)
,
(

0 1
−1 0

)
,
(

0 1
1 0

)
, (as well as infinitely many other choices) are correct an-

swers for this question. Grading this question first requires converting the matrices appearing in the
student’s answer to vectors v1, v2 and v3. Next one should check whether the span of v1, v2, v3
equals the span of the vectors u1, u2, u3 that correspond to the matrices in the model answer. This
last check involves the calculation of the rank of the matrix [u1, u2, u3] and of the augmented matrix
[u1, u2, u3, v1, v2, v3]. Tasks like this can be easily accomplished by a computer algebra package, but
are almost impossible to be carried out with standard authoring software. This is one of the reasons

why most of the traditional assessment software is restricted to the use of multiple choice or multiple
response questions, which —no matter how well designed— are not able to deal with relatively ‘open’
questions such as the one above.

Using a powerful computer algebra system such as Maple for the purpose of evaluation, creates
however its own difficulties. The most typical one is that it becomes quite difficult to distinguish
a correct answer (one which is mathematically equivalent to the teacher’s model answer) from an
answer which is nothing but a syntactically correct rephrasing of the question itself: when a drill and
practice test on integration asks for the calculation of

∫
sin2(x)dx, the Maple input int(sin(x)^2,x)

definitely should not be regarded as correct (whether such drill and practice exercises still are mean-
ingful, once one decides that computer algebra systems are to be introduced in the curriculum, is an
all together different issue)! Care therefore has to be taken that the answers do not make accidental
(or intentional) use of ‘forbidden’ Maple commands which would make the exercise obsolete.

An often heard objection to computer aided assessment is that it is unable to distinguish between
two incorrect answers, where one is the result of a simple error of calculation and where the other is
a —more serious— ‘method error’: both answers are awarded the same marks by the system. This is
a serious issue, which generally is tackled by splitting up questions such that ‘method marks’ in one
form or another can be given, or —in a similar vein— by restricting the quizzes to large collections
of relatively simple questions, such that the impact of calculational errors becomes negligible. How-
ever when students are allowed to do their home- or exam-work with the aid of a computer algebra
system, this objection no longer holds, as in a certain sense the majority of the errors will be just the
‘method errors’ ! Any remaining types of errors can be dealt with by taking appropriate actions (see
the discussion in paragraph 2.4).

In order to include the mentioned feedback possibilities in our modules for self-evaluation, we
developed the Alice Interactive Mathematics (AIM) server, which is a fast and Maple-powered web-
server with extensive facilities for question and quiz design.

AIM is implemented using Maple (90%) and Java servlets (10%). Most of the work is done by
Maple – the Java servlets are used only to display the web pages that Maple generates and to pass
the student’s answers back to Maple.

The web pages that Maple generates also contain forms for students to fill in their answer which
are then sent back to the Maple program. Maple then takes an appropriate action (for instance grade
the answers and generate a model solution) and sends another web page back to the student through
Java servlets.

Only one copy of Maple is running on the server during the entire process. Thus there is no license
problem if more than one person uses the AIM server.

2.2 Question design

Each AIM test consists of a series of questions. The teacher uses a web interface to type in a question
definition, which is nothing but a text file that uses a flag-based syntax to describe question statement,
grade the student’s answers, generate a model solution etc. A (very) trivial example would be given
by the following lines:

A question on addition.
t> What is 2+2?
a> 2+2
end>

whereby the flags have the following meaning:

(comment) Maple’s standard comment line

t> (type verbatim) print the statement of the question verbatim using Maple’s printf command

a> (answer) the expected answer can be any Maple expression and will be evaluated by Maple
before being returned to the user

end> flag indicating the end of the file; usually a quiz file contains more than one question

Upon execution, Maple generates a web form presenting to the student the question “What is 2+2?”,
next reads in the student’s answer and compares it to its own answer, which is obtained by evaluating
the line following the a> flag.

A more complicated calculus question on integration might for example be constructed as follows:

h> F :=‘*‘(op(combinat[randcomb]([exp(-x),sin(2*x),cos(5*x)],2)));
t> Evaluate the following integral:
p> Int(F,x)
s> [y->‘aim/Testzero‘(diff(y, x) - F), int(F, x)]
end>

whereby the h>, p> and s> flags have the following effects:

h> (hidden command) construct a random product of two factors out of the given list

p> (prettyprint) use Maple’s prettyprinter to display math formulas in a nice two-dimensional
format; this flag is especially useful for displaying matrices or integrals

s> (special) use the first element of the given list, namely a Maple procedure of the type y → f(y),
to evaluate the student’s answer (here: differentiate the answer, subtract it from the integrand
(F) and check whether the result is zero, by applying to it the procedure ‘aim/Testzero‘); also
return the model answer, which is given by the second element of the list.

After all the question definitions have been compiled by Maple they are added to a question
database from which the actual tests will be built. A typical test of about 10 questions —provided it
contains no on-the-fly generation of graphics— takes about 0.2 seconds to be generated (of course, de-
pending on the load of the network, it takes a couple of extra seconds before the resulting page appears
on the student’s screen). Questions can include Greek symbols (these are first converted into escape se-
quences by Maple and then converted into HTML Greek letters by the Java servlet), subscripts, super-
scripts and two-dimensional Maple output (such as fractions, matrices or integrals). The full descrip-
tion of the syntax is available on the web (see http://allserv.rug.ac.be/~fkolokol/aim/docs).

2.3 Quiz design

To discourage cheating among students, AIM maintains a large database from which questions can
be chosen at random using customizable selection criteria, based on topic and difficulty level. In
addition Maple’s random generator is used to provide additional variation to most questions, by
randomly varying parameters. As a result, each student receives after logging in to the server a
unique, personalized set of questions which is based on their student-ID. As long as the random

generator receives the same student-ID as seed, the resulting question sets will always be identical.
This gives students then the opportunity to inspect their questions, log off from the system, do their
homework and come back a couple of days later to send in their answers. Of course, for pure self-
evaluation purposes students can at any time log in anonymously to the system and receive for each
topic of their choice a set of questions, which, in the absence of a seed, will be completely randomized.

2.4 Grading

After the answers have been submitted to the server, they are evaluated by Maple. For each wrong
answer the student is given the opportunity to redo the question, but is given a penalty (of 10% by
default). When the student answers with a syntactically incorrect Maple statement, a simple warning
is issued and no penalisation issues. This method of automatically giving partial marks has several
advantages and appears to be well appreciated by the students — despite the penalisation feature:
it forces them to be careful, it encourages them to verify their answers before submitting them and
students know immediately after completion of the test if they have made a mistake and they don’t
have to wait for days, as is often the case with traditional homework.

AIM allows other possibilities for giving partial marks too: custom grading procedures and mul-
tiple response questions. A custom grading procedure is a Maple procedure written by the teacher.
It accepts the student’s answer as an argument and returns either true (meaning correct answer) or
false (meaning incorrect answer) or else a number between 0 and 1 which represents the student’s
grade on that question. Grading procedures can actually warn the student and give hints (or give an
extra penalization), depending on the form of the answer.

To facilitate question creation, AIM supports five pre-defined question types: algebraic, matrix,
multiple choice, multi-choice, and constant. In addition, any of the existing Maple types can be used
as well. For example, a question that asks to compute the normal at some point to some surface will
have a Maple type [constant, constant, constant]. The five predefined types come with a different
grading procedure as described below.

By default a question has type ‘algebraic’. In this case the grading procedure consists of checking
the mathematical equivalence between the student’s answer and the model answer, by subtracting
one from the other and applying Maple’s extensive machinery to test if the result is 0. When the
question is of type ‘matrix’, the same procedure is applied component-wise. The student receives full
marks or zero, depending on whether the results all equal zero or not.

For multiple choice questions, the students are presented with a menu from which they must
choose a single answer. The standard procedure for multiple choice is the natural one - the student
receiving full marks or zero, depending on whether the student’s selection corresponds to the teacher’s
selection. As with the other types, the teacher can also design a custom grading procedure which can
assign partial marks to some of the choices.

For a multiple response question, the students must click on all of the correct answers from a given
list of correct and incorrect answers.

For an answer of type ‘constant’, the grading procedure consists of verifying numerically if the
student’s and teacher’s answers are within 5% of each-other.

In addition to the pre-defined AIM types, any Maple type can also be used when designing a
question. In this case the student’s answer is checked for compatibility with the type specified. By
default any mismatch results in a warning, without a penalty for the student. In order to deal with
those circumstances where a specific mismatch hints at a basic misunderstanding on the student’s

part, the teacher can also opt for a custom grading procedure. In that case the Maple procedure
for evaluation of the answer will take a penalizing action when one or more specific type mismatches
occur (as for example could be the case in an exercise where a student mixes up vectorial and scalar
quantities incorrectly).

2.5 Administration details

For the teacher AIM provides extensive facilities for administering questions and quizzes. All of these
facilities are available through a web-interface and are password-protected.

AIM provides four different tools to monitor the student’s progress: grade reports, aggregate
statistics, log files and the ‘spy’ ability to inspect and modify a student’s answer. In addition students
may communicate with the teacher by email, through a link conveniently placed on every quiz.

The log and grade reports are updated every time the student modifies an answer. The teacher
has complete control over how the grades for each quiz are assigned, as well as how the overall grade
is computed. The ‘spy’ feature allowing the teacher to inspect and modify a student’s questions
and/or answers is useful to react quickly to any reported bugs in the questions. It’s presence is also
indispensable, because, even though the use of a computer algebra system virtually rules out the
possibility that a student receives zero marks as a consequence of an elementary error of calculation,
there still remains the possibility that a somewhat distracted student solves an altogether different
exercise correctly and receives zero marks. There is no way in which a computer programme can deal
with this kind of error (which of course frequently occurs also with paper and pencil work) and this
case should be dealt with by the teacher on an individual basis.

For administering homeworks a due date can be set up by the teacher. Up to this due date the
students can enter their answers and modify them, but they are not able to obtain the correct results
from the computer. After the due date their answers cannot any longer be modified and the model
answers become available.

AIM is currently being used at two different universities and one college in Belgium. The AIM
server can be installed on any Windows computer that has Maple and a net connection. It is freely
available by writing to the authors.

3 References

1. Alice Interactive Mathematics (AIM) http://allserv.rug.ac.be:8081/aim/docs

2. Calculus on the Web (COW) http://fourier.math.temple.edu

3. Heriot-Watt WebTest http://webtest.ltc.hw.ac.uk

4. WebWorks http://webwork.math.rochester.edu/docs/

5. Web Hosted Assessment of Mathematics (WHAM) http://l62.csm.port.ac.uk/

