

PARALLEL 3-POINT EXPLICIT BLOCK METHOD FOR
SOLVING HIGHER ORDER ORDINARY DIFFERENTIAL

DIRECTLY

ZURNI BIN OMAR
School of Information Technology

Universiti Utara Malaysia
06010 UUM, Sintok

Kedah, Malaysia
zurni@webmail.uum.edu.my

and
MOHAMED SULEIMAN
Department of Mathematics
Universiti Putra Malaysia

43400 UPM, Serdang
Selangor, Malaysia

msuleiman@lan.moe.gov.my

ABSTRACT

In this paper, a new method called parallel 3-point explicit block method for solving a single equation
of higher order ODE directly using constant step size is developed. This method, which calculates the
numerical solution at more than one point simultaneously, is parallel in nature.

The program of the method employed is run on a shared memory Sequent Symmetry S27 parallel
computer. Computational advantages are presented comparing the results obtained by the new method
with that of conventional 1-point method. The numerical results show that the new method reduces the
total number of steps and execution time. The accuracy of the parallel block and the conventional 1-
point methods is comparable particularly when finer tolerances are used.

Keywords: Parallel, 3-point, explicit block method, higher order ODEs, directly.

1. INTRODUCTION

Consider the following dth order ODE

 bxaayyyyyxfy i
idd ≤≤=′′′= − ,)(),,...,,,,()(1 η . (1.1)

Equation (1.1) can be solved by reducing it to the equivalent first order system and then solve it using
first order ordinary differentials (ODEs) methods. The disadvantage of these methods is that the system
in (1.1) has been enlarged. The other approach is to solve (1.1) directly as discussed in [3], [4], [5], [6],
[9] and [10]. There have been quite a number of parallel methods for solving first order ODEs as
discussed in [1], [2], [8] and [11]. However, the available methods for solving (1.1) directly are mostly
sequential.

In this paper, a new parallel method called 3-point explicit block method is introduced. In this method
the interval],[ba is divided into series of blocks with each block containing three points, i.e

nnn xxx and 1,2 −− in the first block while 21 , ++ nn xx and 3+nx in the second block (refer to Figure 1) where
solutions to (1.1) are to be computed.

 Figure 1: 3-Point Method

The computation which proceeds in blocks is based on the computed values at the earlier blocks. If the
computed values at the previous k blocks are used to compute the current block containing 3 points,
then the method is called 3-point k-block method. Within a block it is possible to assign the
computational tasks at each point to a single processor and therefore the computations can be
performed simultaneously.

2. DERIVATION OF THE PARALLEL 3-POINT EXPLICIT BLOCK METHOD

Integrating Equation (1.1) p times gives

 dxdxyyyxfdxdxyyyxy
tn

n

tn

n n n n nn n n n

x

x

x

x

x

x

x

x

x

x

x

x

d
x

x

x

x

x

x

x

x

dd ...),...,,,(... = ...),...,,,(... 11∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫
+ +

−− ′′ (2.1)

where
 .3,2,1 , =+=+ tthxx ntn

x x x x x x xn n n n n n n− − + + + +2 1 1 2 3 4

Define)(, xP nk as the interpolation polynomial which interpolates),...,,,(1−′ dyyyxf at the k back

values namely { }1,...,2,1,0 −=− kix in as follows

n

k

m

m
nk f

m
s

xP m
1

0
,)1()(∇




 −
−= ∑

−

=

where

h

xxs n−=

Replacing),...,,,(1−′ dyyyxf with)(, xP nk in (2.1) leads to
















+

















−

+















+
















+
















=

















−−

−−

−
−

+−

+−

+−

+−

+−

+−

−

−

−

−
+

−
+

−
+

3

2

1

)1(1

)1(1

)1(
1

)2(2

)2(2

)2(
2

)1(

)1(

)1(

)(

)(

)(

)(
3

)(
2

)(
1

3

2
)!1(

...
3

2
!2

3

2

A
A
A

y
y

y

p
h

y
y

y
h

y
y

y
h

y
y
y

y
y
y

n
n

p

n
n

p

n
np

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

 (2.2)

where

dxdxf
m

s
A

jn

n n n n n

x

x

x

x

x

x

x

x

x

x
n

m
k

m

m
j ...)1(...

1

0
∫ ∫ ∫ ∫ ∫∑
+

∇




 −
−=

−

=

.

Substituting hdsdx = and changing the limit of integration in (2.2) leads to

























∇

∇

∇

+
















−

+















+
















+
















=

















∑

∑

∑

−

=

−

=

−

=

−−

−−

−
−

+−

+−

+−

+−

+−

+−

−

−

−

−
+

−
+

−
+

1

0

)(
,3

1

0

)(
,2

1

0

)(
,1

)1(1

)1(1

)1(
1

)2(2

)2(2

)2(
2

)1(

)1(

)1(

)(

)(

)(

)(
3

)(
2

)(
1

3

2
)!1(

...
3

2
!2

3

2

k

m
n

mp
m

n

k

m

mp
m

n

k

m

mp
m

p

n
n

p

n
n

p

n
np

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

pn
n

f

f

f

h
y
y

y

p
h

y
y

y
h

y
y

y
h

y
y
y

y
y
y

α

α

α (2.3)

where

 ds
m

s
p

sj p
mp

mj
)!1(

)1()1(
0

1
)(

, ∫ 




 −
−

−−=
−

α .

Define the generating functions)()(tG p
j as follows

 ∑
∞

=

=
0

)(
,

)()(
m

mp
mj

p
j ttG α . (2.4)

Solving (2.4) leads to the following relationships

 dp
tp

tGpj
tG

p
j

p
p

j ,...,3,2for
)1log()!1(

)()!1(
)(

)1()1(
)(=

−−
−−

=
−−

 (2.5)

which can easily be verified using mathematical induction. The solution of (2.5) when is given by:

.,...,3,2for
2

 ,

,
2

 ,

,
2

 ,

,
22

)3)(4(,3

,
2

)3(,2

,
2

1 ,1

0

)(
,3)1(

2,3
))(

1,3
)1(

1,3
)(

0,3

0

)(
,2)1(

2,2
))(

1,2
)1(

1,2
)(

0,2

0

)(
,1)1(

2,1
))(

1,1
)1(

1,1
)(

0,1

0

)1(
,3)1(

1,3
)1(
0,3

0

)1(
,2)1(

1,2
)1(
0,2

0

)1(
,1)1(

1,1
)1(
0,1

dp
rm

rm

rm

rm
mm

rm
m

rm

m

r

p
rp

m
p
m

pp

m

r

p
rp

m
p
m

pp

m

r

p
rp

m
p
m

pp

m

r

r
m

m

r

r
m

m

r

r
m

=
−+

−==

−+
−==

−+
−==

−+
−++==

−+
−+==

−+
−==

∑

∑

∑

∑

∑

∑

=

−
++

−

=

−
++

−

=

−
++

−

=
+

=
+

=
+

α
αααα

α
αααα

α
αααα

α
αα

α
αα

α
αα

 (2.6)

Note that formula (2.2) can be written in the form

























+
















−

+















+
















+
















=

















∑

∑

∑

−

=
−−

−

=
−−

−

=
−−

−−

−−

−
−

+−

+−

+−

+−

+−

+−

−

−

−

−
+

−
+

−
+

1

1

),3(
,1

1

0

),2(
,1

1

0

),1(
,1

)1(1

)1(1

)1(
1

)2(2

)2(2

)2(
2

)1(

)1(

)1(

)(

)(

)(

)(
3

)(
2

)(
1

3

2
)!1(

...
3

2
!2

3

2

k

m
mn

p
mk

k

m
mn

p
mk

k

m
mn

p
mk

p

d
n

p

d
n

p

d
np

pd
n

pd
n

pd
n

pd
n

pd
n

pd
n

pd
n

pd
n

pd
n

pd
n

pd
n

pd
n

f

f

f

h
y
y

y

p
h

y
y

y
h

y
y
y

h
y
y
y

y
y
y

β

αβ

β (2.7)

where

)(
,

1
),(

,1)1(p
rj

k

mr

mpj
mk m

r
αβ ∑

−

=
− 





−= . (2.8)

3. TEST PROBLEMS

The following problems were tested on the Sequent Symmetry S27 using the 2-point explicit block
method.

Problem 1: 6)0(,2)0(,1)0(,42 =′′=′=−′′=′′′ yyyyy , 10 ≤≤ x

Solution: xexxy 22)(+=
Artificial Problem.

Problem 2: 10)0(,2)0(,2)0(,438 =′′−=′=−−′=′′′ yyyeyyy x , 10 ≤≤ x
Solution: y x e ex x() = + −3
Source: Suleiman (1989).

Problem 3: ,)12324914(234)(xiv exxxxy −+++=
 6)0(,2)0(,0)0()0(−=′′′=′′=′= yyyy , 0 1≤ ≤x .

Solution: y x x x e x() ()= −2 21 .
Source: Russel and Shampine (1972).

4. NUMERICAL RESULTS

The numerical tests were performed on the shared memory parallel computer, Sequent S27 which has 6
processors. The programs for E1P and the sequential implementation of the 2PEB method was written
in C language whereas parallel C language was used for the parallel implementation. Both languages
were supported by the Sequent C library. Each method used 5 back values in its computation. The
abbreviations and notations are defined as follows:

h Step size used
 STEPS Total number of steps taken to obtain the solution
 MTD Method employed
 MAXE Magnitude of the maximum error of the computed solution

TIME The execution time in microseconds needed to complete the integration in a
given range using the parallel computer Sequent S27.

S3PEB Sequential implementation of the 3-point explicit block method
P3PEB Parallel implementation of the 3-point explicit block method

The maximum error is defined as follows

())(maxMAXE
STEPSi1 ii xyy −=

≤≤

The comparison of the 3PEB method with the E1P method for solving the test problems in terms of the
total number of steps, maximum error and execution times are tabulated in Tables 1-3. Table 4 shows
the ratio of steps and times of the 3PEB method to E1P method. The ratios of the two parameters are
obtained by dividing the parameters of the latter method with the corresponding parameters of the
former methods. Hence, the ratios (also known as speedup) that are greater than one for both
parameters indicate the efficiency of the 3PEB method.

Table 1

Comparison Between the E1P and 3PEB Methods for Solving
Problem 1

h MTD STEPS MAXE TIME
 E1P 100 4.41035(-2) 122372

210− S3PEB 37 1.75128(-1) 126945
 P3PEB 37 1.75128(-1) 274406
 E1P 1000 4.39119(-3) 1142734

310− S3PEB 337 6.28697(-3) 1123455
 P3PEB 337 6.28697(-3) 833854
 E1P 10000 4.38927(-4) 11430453

410− S3PEB 3337 4.58567(-4) 11171714
 P3PEB 3337 4.58567(-4) 7986848
 E1P 100000 4.38908(-5) 114082053

510− S3PEB 33337 4.40879(-5) 111392883
 P3PEB 33337 4.40879(-5) 78242291

Table 2

Comparison Between the E1P and 3PEB Methods for Solving
Problem 2

h MTD STEPS MAXE TIME
 E1P 100 1.18234(-1) 130511

210− S3PEB 37 1.10115(-1) 135708
 P3PEB 37 1.10115(-1) 254185
 E1P 1000 1.17139(-2) 1223205

310− S3PEB 337 1.17042(-2) 1209884
 P3PEB 337 1.17042(-2) 913258
 E1P 10000 1.17030(-3) 12235538

410− S3PEB 3337 1.17029(-3) 12036763
 P3PEB 3337 1.17029(-3) 8798665
 E1P 100000 1.17019(-4) 122141796

510− S3PEB 33337 1.17019(-4) 120063725
 P3PEB 33337 1.17019(-4) 87246831

Table 3

Comparison Between the E1P and 3PEB Methods for Solving
Problem 3

h MTD STEPS MAXE TIME
 E1P 100 1.00778(-2) 210474

210− S3PEB 37 1.00779(-2) 201983
 P3PEB 37 1.00779(-2) 325724
 E1P 1000 1.00078(-3) 2006247

310− S3PEB 337 1.00078(-3) 1850179
 P3PEB 337 1.00078(-3) 1583939
 E1P 10000 1.00008(-4) 20077275

410− S3PEB 3337 1.00008(-4) 18504213
 P3PEB 3337 1.00008(-4) 15212065
 E1P 100000 1.00001(-5) 200307659

510− S3PEB 33337 1.00001(-5) 184047416
 P3PEB 33337 1.00001(-5) 151403794

Table 4

The Ratio Steps and Execution Times of the 3PEB Method to the E1P
Method for Solving Higher Order ODEs

TOL MTD RATIO RATIO TIME
 STEP PROB.1 PROB.3 PROB.4

210− S3PEB 2.70270 0.96398 0.96171 1.04204
 P3PEB 2.70270 0.44595 0.51345 0.64617

310− S3PEB 2.96736 1.01716 1.01101 1.08435
 P3PEB 2.96736 1.37043 1.33939 1.26662

410− S3PEB 2.99670 1.02316 1.01651 1.08501
 P3PEB 2.99670 1.43116 1.39061 1.31983

510− S3PEB 2.99967 1.02414 1.01731 1.08835
 P3PEB 2.99967 1.45806 1.39996 1.32300

5. COMMENTS ON THE RESULTS AND CONCLUSION

It is apparent from the results that the 3PEB method outperforms the E1P method in term of the total
number of steps. As the step size becomes finer, the 3PEB method reduces the number of steps to
almost one half. These results are expected since the 3PEB method approximates the numerical
solution at three points respectively at the same time, thus reducing the number of steps taken by the
method.

In term of accuracy, both E1P and 3PEB methods have the same order of accuracy.

As expected, the execution times taken by the parallel implementation of the 3PEB method are more
than those taken by the sequential counterpart and the E1P method at -210h = . This is because the
number of steps taken is small and most of the execution times are dominated by the parallel
overheads. However, the timings of the parallel version of the 3PEB method are better then other
methods when -210h < . The reason for these gains is that as the step size gets smaller, more steps are
taken to complete the computation. By using 3 processors instead of 1, the computation can be
performed quicker. In other words, the parallelism in the 3PEB method could really be exploited. The
results also suggest that parallel 3PEB method is recommended for solving second order ODEs directly
using finer step sizes.

References

[1] Birta L.G. & Abou-Rabia O. 1987. Parallel Block Predictor-Corrector Methods for ODEs, IEEE
Transactions on Computers, Vol C-36, No.3, pp. 299-311.

[2] Chu M.T. & Hamilton H. 1987. Parallel Solution of ODEs by Multi-Block Methods, Siam J. Sci.
Stat. Comput., Vol 8, No. 1, pp. 342-353.

[3] Gear, C.W. 1966. The Numerical Integration of Ordinary Differential Equations. Math. Comp. 21:
146-156.

[4] Gear, C.W. 1971. Numerical Initial Value Problems in Ordinary Differential Equations. New
Jersey: Prentice Hall, Inc.

[5] Gear, C.W. 1978. The Stability of Numerical Methods for Second-Order Ordinary Differential
Equations. SIAM J. Numer. Anal. 15(1): 118-197.

[6] Hall, G. and Suleiman, M.B. 1981. Stability of Adams-Type Formulae for Second-Order Ordinary
Differential Equations. IMA J. Numer. Anal. 1: 427-428.

[7] Russel, R.D. and Shampine, L.F. 1972. A Collocation Method for Boundary Value Problems.
Num. Math 19: 1-28.

[8] Shampine L.F. and Watts H.A. 1969. Block implicit one-step methods, Math. Comp., Vol. 23, pp
731-740.

[9] Suleiman, M.B. 1979. Generalised Muiltistep Adams and Backward Differentiation Methods for
the Solution of Stiff and Non-Stiff Ordinary Differential Equations. PhD Thesis. University of
Manchester.

[10] Suleiman, M.H. 1989. Solving Higher Order ODEs Directly by the Direct Integration Method.
Applied Mathematics and Computation 33(3): 197-219.

[11] Tam H.W. 1989. Parallel Methods For The Numerical Solution Of Ordinary Differential
Equations, Report No. UIUCDCS-R-89-1516. Department of Computer Science, University of Illinois
at Urbana-Champaign.

	Keywords: Parallel, 3-point, explicit block method, higher order ODEs, directly.
	Note that formula (2.2) can be written in the form
	TEST PROBLEMS

	STEPS		Total number of steps taken to obtain the solution
	
	P3PEB	Parallel implementation of the 3-point explicit block method

	Problem 1
	Problem 2
	Problem 3
	Table 4
	The Ratio Steps and Execution Times of the 3PEB Method to the E1P
	Method for Solving Higher Order ODEs
	
	
	
	
	References

