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ABSTRACT 
 

In this paper, a new method called parallel 3-point explicit block method for solving a single equation 
of higher order ODE directly using constant step size is developed.  This method, which calculates the 
numerical solution at more than one point simultaneously, is parallel in nature.   
 
The program of the method employed is run on a shared memory Sequent Symmetry S27 parallel 
computer. Computational advantages are presented comparing the results obtained by the new method 
with that of conventional 1-point method.  The numerical results show that the new method reduces the 
total number of steps and execution time.  The accuracy of the parallel block and the conventional 1-
point methods is comparable particularly when finer tolerances are used. 
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1.   INTRODUCTION 
 
Consider the following dth order ODE 

 bxaayyyyyxfy i
idd ≤≤=′′′= −     ,)(    ),,...,,,,( )(1 η .    (1.1) 

 
Equation (1.1) can be solved by reducing it to the equivalent first order system and then solve it using 
first order ordinary differentials (ODEs) methods. The disadvantage of these methods is that the system 
in (1.1) has been enlarged. The other approach is to solve (1.1) directly as discussed in [3], [4], [5], [6], 
[9] and [10].  There have been quite a number of parallel methods for solving first order ODEs as 
discussed in [1], [2], [8] and [11].  However, the available methods for solving (1.1) directly are mostly 
sequential. 
 
In this paper, a new parallel method called 3-point explicit block method is introduced. In this method 
the interval ],[ ba  is divided into series of blocks with each block containing three points, i.e 

nnn xxx  and 1,2 −−  in the first block while 21 , ++ nn xx  and 3+nx  in the second block (refer to Figure 1) where 
solutions to (1.1) are to be computed.   
 
 
 
   
 
   
 
   Figure 1:  3-Point Method 
 
The computation which proceeds in blocks is based on the computed values at the earlier blocks.  If the 
computed values at the previous k blocks are used to compute the current block containing 3 points, 
then the method is called 3-point k-block method.  Within a block it is possible to assign the 
computational tasks at each point to a single processor and therefore the computations can be 
performed simultaneously. 
 
 
2.   DERIVATION OF THE PARALLEL 3-POINT EXPLICIT BLOCK METHOD 
 
Integrating Equation (1.1) p times gives 
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Define )(, xP nk  as the interpolation polynomial which interpolates ),...,,,( 1−′ dyyyxf  at the k  back 

values namely { }1,...,2,1,0 −=− kix in  as follows 
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Replacing ),...,,,( 1−′ dyyyxf  with )(, xP nk  in (2.1) leads to 
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where  
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Substituting hdsdx =  and changing the limit of integration in (2.2) leads to 
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Define the generating functions )()( tG p
j  as follows 

  ∑
∞

=

=
0

)(
,

)( )(
m

mp
mj

p
j ttG α  .        (2.4) 

           
Solving (2.4) leads to the following relationships  
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which can easily be verified using mathematical induction. The solution of (2.5) when  is given by: 
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Note that formula (2.2) can be written in the form 
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3. TEST PROBLEMS 

 
The following problems were tested on the Sequent Symmetry S27 using the 2-point explicit block 
method. 
 
Problem 1: 6)0(  ,2)0(  ,1)0(     ,42 =′′=′=−′′=′′′ yyyyy , 10 ≤≤ x  

Solution: xexxy 22)( +=  
Artificial Problem. 

Problem 2: 10)0(  ,2)0(  ,2)0(     ,438 =′′−=′=−−′=′′′ yyyeyyy x , 10 ≤≤ x  
Solution: y x e ex x( ) = + −3  
Source: Suleiman (1989). 

Problem 3:   ,)12324914( 234)( xiv exxxxy −+++=  
  6)0( ,2)0( ,0)0()0( −=′′′=′′=′= yyyy , 0 1≤ ≤x . 

Solution: y x x x e x( ) ( )= −2 21 . 
Source: Russel and Shampine (1972). 

 
 

4. NUMERICAL RESULTS 
 
The numerical tests were performed on the shared memory parallel computer, Sequent S27 which has 6 
processors.  The programs for E1P and the sequential implementation of the 2PEB method was written 
in C language whereas parallel C language was used for the parallel implementation.  Both languages 
were supported by the Sequent C library.  Each method used 5 back values in its computation.  The 
abbreviations and notations are defined as follows: 
 

h  Step size used 
 STEPS  Total number of steps taken to obtain the solution 
 MTD  Method employed 
 MAXE  Magnitude of the maximum error of the computed solution 

TIME  The execution time in microseconds needed to complete the integration in a 
given range using the parallel computer Sequent S27. 

S3PEB Sequential implementation of the 3-point explicit block method 
P3PEB Parallel implementation of the 3-point explicit block method 

 



 

 

 
The maximum error is defined as follows 

( ))(maxMAXE
STEPSi1 ii xyy −=

≤≤
 

The comparison of the 3PEB method with the E1P method for solving the test problems in terms of the 
total number of steps, maximum error and execution times are tabulated in Tables 1-3.  Table 4 shows 
the ratio of steps and times of the 3PEB method to E1P method.  The ratios of the two parameters are 
obtained by dividing the parameters of the latter method with the corresponding parameters of the 
former methods.  Hence, the ratios (also known as speedup) that are greater than one for both 
parameters indicate the efficiency of the 3PEB method. 
 
 

Table 1 
 

Comparison Between the E1P and 3PEB Methods for Solving 
Problem 1 

 
h MTD STEPS MAXE TIME 
 E1P 100 4.41035(-2) 122372 

210−  S3PEB 37 1.75128(-1) 126945 
 P3PEB 37 1.75128(-1) 274406 
 E1P 1000 4.39119(-3) 1142734 

310−  S3PEB 337 6.28697(-3) 1123455 
 P3PEB 337 6.28697(-3) 833854 
 E1P 10000 4.38927(-4) 11430453 

410−  S3PEB 3337 4.58567(-4) 11171714 
 P3PEB 3337 4.58567(-4) 7986848 
 E1P 100000 4.38908(-5) 114082053 

510−  S3PEB 33337 4.40879(-5) 111392883 
 P3PEB 33337 4.40879(-5) 78242291 

 
 
 
 
 
 
 
 
 
 
 



 

 

Table 2 
 

Comparison Between the E1P and 3PEB Methods for Solving 
Problem 2  

 
h MTD STEPS MAXE TIME 
 E1P 100 1.18234(-1) 130511 

210−  S3PEB 37 1.10115(-1) 135708 
 P3PEB 37 1.10115(-1) 254185 
 E1P 1000 1.17139(-2) 1223205 

310−  S3PEB 337 1.17042(-2) 1209884 
 P3PEB 337 1.17042(-2) 913258 
 E1P 10000 1.17030(-3) 12235538 

410−  S3PEB 3337 1.17029(-3) 12036763 
 P3PEB 3337 1.17029(-3) 8798665 
 E1P 100000 1.17019(-4) 122141796 

510−  S3PEB 33337 1.17019(-4) 120063725 
 P3PEB 33337 1.17019(-4) 87246831 

 
 
 
 

Table 3 
 

Comparison Between the E1P and 3PEB Methods for Solving 
Problem 3 

 
h MTD STEPS MAXE TIME 
 E1P 100 1.00778(-2) 210474 

210−  S3PEB 37 1.00779(-2) 201983 
 P3PEB 37 1.00779(-2) 325724 
 E1P 1000 1.00078(-3) 2006247 

310−  S3PEB 337 1.00078(-3) 1850179 
 P3PEB 337 1.00078(-3) 1583939 
 E1P 10000 1.00008(-4) 20077275 

410−  S3PEB 3337 1.00008(-4) 18504213 
 P3PEB 3337 1.00008(-4) 15212065 
 E1P 100000 1.00001(-5) 200307659 

510−  S3PEB 33337 1.00001(-5) 184047416 
 P3PEB 33337 1.00001(-5) 151403794 

 
 



 

 

Table 4 
 

The Ratio Steps and Execution Times of the 3PEB Method to the E1P 
Method for Solving Higher Order ODEs 

 
TOL MTD RATIO RATIO TIME  
  STEP PROB.1 PROB.3 PROB.4 

210−  S3PEB 2.70270 0.96398 0.96171 1.04204 
 P3PEB 2.70270 0.44595 0.51345 0.64617 

310−  S3PEB 2.96736 1.01716 1.01101 1.08435 
 P3PEB 2.96736 1.37043 1.33939 1.26662 

410−  S3PEB 2.99670 1.02316 1.01651 1.08501 
 P3PEB 2.99670 1.43116 1.39061 1.31983 

510−  S3PEB 2.99967 1.02414 1.01731 1.08835 
 P3PEB 2.99967 1.45806 1.39996 1.32300 

 
 
 
 
5. COMMENTS ON THE RESULTS AND CONCLUSION 
 
It is apparent from the results that the 3PEB method outperforms the E1P method in term of the total 
number of steps. As the step size becomes finer, the 3PEB method reduces the number of steps to 
almost one half.  These results are expected since the 3PEB method approximates the numerical 
solution at three points respectively at the same time, thus reducing the number of steps taken by the 
method. 
 
In term of accuracy, both E1P and 3PEB methods have the same order of accuracy. 
 
As expected, the execution times taken by the parallel implementation of the 3PEB method are more 
than those taken by the sequential counterpart and the E1P method at -210h = .  This is because the 
number of steps taken is small and most of the execution times are dominated by the parallel 
overheads.  However, the timings of the parallel version of the 3PEB method are better then other 
methods when -210h < .  The reason for these gains is that as the step size gets smaller, more steps are 
taken to complete the computation.  By using 3 processors instead of 1, the computation can be 
performed quicker.  In other words, the parallelism in the 3PEB method could really be exploited.  The 
results also suggest that parallel 3PEB method is recommended for solving second order ODEs directly 
using finer step sizes. 
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