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Abstract

We extend a Mathematica command PolynomialExtendedGCD to
the case that the coeflicients of polynomials contain indeterminates.
By virtue of such an extension of the command, one can solve the
Sylvester (matrix) equation AX — X B = C explicitly even in the case
that the square m x m matrix A and n X n matrix B have common
eigenvalues, where C' is an m x n matrix, X an (unknown) m x n
matrix.

The asymptotic behavior (¢ — 0) of the solution of perturbed (non-
degenarate) Sylvester Equation (A+4%)X — X B = C plays an essential
role in our argument.

1 Notation

Throughout the present paper we let & be a field. We denote by k™ the
k-vector space of column vectors of size n. If £ and F' are k-vector spaces,
we denote by Homy(E, F) the vector space of k-linear maps from E to F.
We also denote by Endy(E) the space of k-linear transformations of E, that
is, Endy(E) = Homy(E,E). Let us denote the k-vector space of m x n
matrices in k by Mat,,.,(k). An m x n matrix X gives rise to a k-linear
map Ly : k™ — k™ by the rule k" 3 v —— Xwv € k™. By this correspondence
Mat,wn(k) > X — Lx € Homy(k™, k™) we identify two k-vector spaces



Mat,,wn (k) and Homy(k™, k™). We also denote by Mat, (k) the space of
square n X n matrices in k, that is, Mat, (k) = Mat,w, (k).
Let A € Mat,,(k), B € Mat,(k), and C € Mat,,»,(k), we call the
equality
AX -XB=C

the Sylvester Fquation with an unknown matrix X € Mat,,«, (k).
For A € Mat,,(k), B € Mat,(k), we define a k-linear map ®,p €
Endy(Mat,«,(k)) as follows:

Q4 p: Matyn(k) > X — AX — XB € Matyxn (k).
Then the Sylvester Equation AX — X B = C' has another form
(I)A’B(X) == C

2 Non-degenerate Sylvester Equations

If the two square matrices A € Mat,,(k) and B € Mat,(k) of the co-
efficients of Sylvester Equation AX — XB = (C, have disjoint spectrum,
that is, 0(A) N o(B) = 0, the linear transformation ®4 5 is an automor-
phism of Mat,,w, (k). This is well-known and is also proved by represen-
tation theoretic argument in [10]. In such a case, the Sylvester Equation
AX — XB = (C is called non-degenerate. For a non-degenerate Sylvester
Equation, we can construct the explicit polynomial formula for the inverse
map &' : Maty,n(k) > C —the upper off-diagonal block of a certain
A C
0 B>'
For a precise statement we quote a theorem in [10].

polynomial of the block diagonal matrix 17" = <

Theorem 2.1 Let A be a square m xm matriz, B a square n Xn matriz, and
C an m x n matriz. Let P4(\) and Pg()\) be the characteristic polynomials
of A and B, respectively. We assume that Pa()\) and Pg()\) are relatively
prime. Let Qa(\) and Qg(\) be polynomials satisfying

Pa(MN)Qa(N) + Pp(N)@B(N) = 1.

Then the unique solution X of the Sylvester Equation AX — X B = C is equal
to the upper off-diagonal block of the block triangular matriz Pg(T)Qp(T),
that s,



PaQa(M = (¢ ).

where I,,, is the identity matriz of size m and T is a block diagonal matriz
A C
T=(y )
3 Mathematica programming for the inver-
sion formula of ¢4 5 (non-degenerate case)

Let A be a square m x m matrix, B a square n X n matrix, and C' an m x n
matrix. We assume the characteristic polynomials P4(A) and Pg(\) of A
and B, respectively, are relatively prime. A computing system Mathematica
contains a package PolynomialExtendedGCD which gives a pair of polyno-
mials Q4(A\) and Qg (\) such that Pa(A)Qa(A) + Ps(N)Qp(A) =1 as a list
of length 2 for an input { P4(\), Pg(\)}. By virtue of the package Polynomi-
alExtended GCD, we can translate Theorem 2.1 into Mathematica language.
The final output of the following programming is equal to ®,'5(C).

<<Algebra‘ PolynomialExtendedGCD‘
T=Join[Transpose[Join[Transpose[A],Transpose[Const]]],
Transposel[
Join[Transpose[Table[Table[0,{Length[A]l}],{Length[B]}]1],
Transpose [B]]1]]

Coef=CoefficientList[
Det[\[Lambda] MatrixPower[B,0] -B]
PolynomialExtendedGCD [Det [\ [Lambda] MatrixPower[A,0] -A],
Det [\ [Lambda] MatrixPower[B,0] -BI]J[[2]1]1[[2]1],\[Lambdal]l;

TT:=Coef .Table[MatrixPower[T,n],{n,0,Length[Coef]-1}]1//Simplify



Transpose[
Table[Transpose[Table[TT[[i]],{i,Length[A]l}]] [[Length[A]+j1],
{j,Length[B]}]]

According to the above script of Mathematica whose essential parts are
polynomial operations and calculations, we define a new command Sylvester[{ A, B, C'}]
which gives a unique solution X of a non-degenerate Sylvester Equation
AX —XB = C. We may reconstruct PolynomialExtendedGCD by Euclidean
mutual division algorithm using built-in commands PolynomialQuotient and
PolynomialRemainder recursively, in which we can specify the indeterminate
of polynomials. Such a modification or generalization of PolynomialExtend-
edGCD enable us to treat a field extension of coefficients of Sylvester Equa-
tions.

4 Perturbation of Sylvester Equations

In this section we consider a degenerate Sylvester Equation AX — XB = C,
that is, 0(A) No(B) # 0. The main idea of our treatment is as follows. We
introduce an indeterminate t and perturb linearly the degenerate Sylvester
Equation AX — XB = C such as (A + t)X — XB = (. For almost
all ( that is, at most finitely many exceptions) scalar value of ¢ in k the
Sylvester Equation (A + t)X — X B = C is non-degenerate, so we have the
unique solution ®3}, 5(C) = Sylvester[{A + t, B, C'}] by matrix operations
and polynomial calculations. Then we observe the asymptotic behavior of
Sylvester[{A+t,B,C}] (t — 0) or the principal part of Laurent expansion
of Sylvester[{A +t, B,C}] with respect to the center 0

Sylvester[{A+t, B,C}]//Series[#, {t,0,0}]&.

In general degenerate Sylvester Equations may be inconsistent or indeter-
minate. Inconsistency and indeterminacy of the equations are closely related
to the singularity of Sylvester[{A +t, B,C}] at t = 0.

The following theorem is a corollary of the general theory of linear equa-
tions, which describes a beautiful connection between solvability of the equa-



tion and removability of singularity in the case of at most simple pole singu-
larity. The relation between solvability of the equation and removability of
perturbation singularity is much more complicated in the higher singularity
case.

Theorem 4.1 Let A be a square m X m matriz, B a square n X n matrix.
Let X(t,C) be a unique solution of the perturbed Sylvester Equation (A +
t)X — XB = C, for an arbitrary m x n matriz C' and a scalar t € k (at
most finite number of exception of values). We assume that there exist a
non-zero linear functional 2 on the space of m x n matrices Mat,«, (k) and
a non-zero matric Y € Mat,, (k) such that the difference

Z(t,C) = X(,C) — @y

15 a rational function of t whose denominator does not vanish att = 0. Then
we have the following;

1. The Sylvester Equation AX — XB = C has a solution if and only if
Q(C) =0.

2. For each matriz C satisfying Q(C) = 0, the solution space of the
Sylvester Equation AX —X B = C'is equal to the line {tY+Z(0,C) |1 €

k).

5 A numerical example of perturbation and
asymptotics

In this section we give a simple and nontrivial numerical example of degen-
erate Sylvester Equation.

(14t 2
c=(" 1)
r S

We consider the following perturbed Sylvester Equation

> with an indeterminate ¢, B = (2 g), and

AX - XB=0C,



where X is an unknown 2 x 2 matrix and ¢ is the indeterminate.
Then the characteristic polynomials Py, () of A; and Pg(\) of B are the
following;
Py, (\) =5t + 1% — 5\ — 2tA + \?

Pg(A) = —11A+ N’
Generalized PolynomialExtendedGCD gives us two polynomials @ 4()) and
Qu()) satisfying Pa,(N)Qa(N) + Ps(N)Qp(\) = 1.

66 — 17t 4t — 6X + 2t

\) =
Q4N £(330 — 19t — 122 + ¢3)

B3P H6(=5+N) —t(7T+2))

A
@e() £(330 — 19t — 1262 + 3)

The solution X;(C) of 4, X — XB = C has the following asymptotic
expansion ¢ tends to 0;

Q
Xi(C) = ?Y + Z(t,C),

where Q(C) = 2=(8p — 6¢g — 4r + 3s), ¥ = ( 1 _2>, and

-2 1
p—482¢+302r—364s —482p—601g—364r—2s
+ O(t) + O(t)
Z(t7 C) = ( 151p7182?][£)327r7514s + O(t) _2(182p+?104’>7§147‘+3025) + O(t)
3025 9075

Applying Theorem 4.1 to the above, we have the solution of the degen-
erate Sylvester Equation

Ay X —XB=C.

6 Concluding remark

In the present paper we consider the polynomial solution of a non-degenerate
Sylvester Equation AX — X B = C and a perturbation approach to a degen-
erate Sylvester Equation. The solution of a perturbed Sylvester Equation



is explicitly described by virtue of a generalization of a Mathematica pack-
age PolynomialExtendedGCD which permits indeterminates in coefficients
of polynomials.

We can read solvability of the degenerate Sylvester Equation in the asymp-
totic behavior of such a computing system solution of the associated per-
turbed equation.

In the case of simple pole singularity the relation between solvability and
removability of singularity is revealed. If the asymptotic expansion contains
a higher singularity, the solvability condition and the solution space of the
degenerate equation may be determined the principal part of singularity.
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