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Abstract

We discuss how to decompose the zero set of a multivariate polynomial

system with inexact coe�cients to a sequence of zero sets of reduced triangular

sets in a numerically stable way.

1 Introduction

Finding the solutions to a system of non-linear polynomial equations over a given
�eld is a classical and fundamental problem in the computational literature. Many
problems in robotics, computer vision, computational geometry, signal processing
involve solving polynomial systems of equations. A number of symbolic, numeric
and hybrid approaches have been proposed. Newton's algorithms and homotopy
methods are two main numeric approaches for solving zero-dimensional polynomial
systems. Newton's method works well only if we are given good initial guesses
to the solutions and it is di�cult for most practical problems. Since 1970's, the
rapid advances in techniques for homotopy method have brought a great leap in the
feasibility of solving numerical polynomial systems globally [8] [11]. However, it still
su�ers some problems such as path-crossing[12].

Most papers on symbolic or hybrid methods(combination of symbolic and nu-
meric approaches) for polynomial solving concentrate on Gr�obner basis and resul-
tant method. It is well known that Gr�obner basis method can not be applied safely
with 
oating point arithmetic and requires to increase the precision of computa-
tion dramatically compared with input and output precision. Algorithm based on
resultant method provides one of the most e�cient solution method for small and
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medium-size zero-dimensional polynomial systems [3][18]. Di�erent kinds of resul-
tant matrices are used for constructing monomial bases, multiplication maps and,
ultimately, reduce solving a polynomial system to an eigenvalue problem. On the
other hand, as directly applying resultant for polynomial solving, Wu Wen-ts�un de-
veloped the theory of subresultant for reducing a polynomial system to a family of
triangular sets. The subresultant polynomial remainder sequence is well known as
the best non-modular algorithm for computing GCD and resultant of sparse mul-
tivariate polynomials [1][2][4][5]. However, its application in polynomial solving is
still relatively unexplored. In [13], Noda and Sasaki have used subresultant theory
for computing approximate GCD of multivariate polynomials and then, applied it
to solve ill-condition polynomial systems. But their purpose is to divide out the
approximate GCD and transfer the system to well-condition problem.

In this paper, we combine Wu's symbolic elimination theory with Noda and
Sasaki's approximate GCD computation to solve systems of polynomial equations
with numeric coe�cients. Our paper is organized as follows. In section 2 we de-
scribe Wu's method, followed in section 3 by generalizing it to polynomials with
numerical coe�cients. Section 4 compares the current approach with the Gr�obner
basis method.

2 Wu's Elimination Theory

2.1 Preliminaries

� Let K be a �eld of characteristic 0 and let x1; : : : ; xn be a set of indeterminates
with the order: x1 � x2 : : : � xn. K[x1; : : : ; xn] is the ring of polynomials in
these variables.

� Let c be the greatest subscript such that xc actually occurs in f . We de�ne:

1. cls(f) = the class of f = c.

2. lv(f) = the leading variable of f = xc.

3. cdeg(f) = the class degree of f = degxcf .

4. ini(f) = the initial of f with respect to lv(f) = coe�(f; xc; cdeg(f). Note
that ini(f) is a polynomial in K[x1; : : : ; xc�1].

� A polynomial g is said to be reduced with respect to f if degxc(g) < cdeg(f):

� Let PS = fp1; p2; : : : ; psg be a polynomial set in K[x1; : : : ; xn], PS is called a
triangular set if either s = 1 and p1 6= 0, or s > 1 and cls(p1) < cls(p2) < � � � <
cls(ps): If s > 1 and pj is reduced with respect to pi for each pair j > i, then
PS is called an ascending set. An ascending set is said to be contradictory if
s = 1 and p1 is a non-zero constant.
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� For a non-empty polynomial set PS 2 K[x1; : : : ; xn], the greatest class c, if it
exists, for which the number of corresponding polynomial is > 1, is called the
dominant class of PS, the least degree of polynomials having class c is called
the dominant degree of PS. In case, no such c > 0 exists then dominant class
will be de�ned to be 0, while dominant degree will be left unde�ned.

� For polynomial sets PS and polynomial G. Zero(PS) denotes the zero set of
PS, Zero(PS=G) for Zero(PS)� Zero(G).

2.2 Subresultant Chain

Let f and g be two multivariate polynomials in K[x1; : : : ; xn]. Suppose lv(f) =
lv(g) = x and m = cdeg(f) � cdeg(g) = n:

f = fmx
m + � � �+ f0; fm 6= 0: (1)

g = gnx
n + � � �+ g0; gn 6= 0: (2)

According to [2][4], the subresultant chain is de�ned as

Sj(x) =

����������������

fm fm�1 � � � � � � f2j�n+2 xn�j�1f
. . .

...
...

fm fm�1 � � � fj+1 x0f
gn fn�1 � � � � � � g2j�m+2 xm�j�1f

. . .
...

...
gn gn�1 � � � gj+1 x0g

����������������

; (3)

where fk = gk = 0 if k < 0. Therefore

Sj(x) = Uj(x) f(x) + Vj(x) g(x):

where Uj is Sj except for the last column, which is top down

xn�j�1 � � � 1 0 � � � 0

and Vj is Sj except for the last column, which is top down

0 � � � 0 xm�j�1 � � � 1;

hence, degxUj � n� j � 1 and degxVj � m� j � 1: It is clear that

Zero(ff; gg) � Zero(Sj); for 0 � j � n� 1:

Proposition 1 The last subresultant Sn�1 is equal up to a sign to the pseudo-
remainder of f with respect to g, i.e., for some polynomial q,

Sn�1 = �prem(f; g) = �gm�n+1
n f + q g: (4)
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Proposition 2 S0 is the resultant of f and g, and the vanishing of S0 is the nec-
essary and su�cient condition for f and g to have a GCD of positive degree in
x.

Proposition 3 If f and g have a non-trivial GCD of degree d > 0, then Sj = 0
for 0 � j < d, and GCD(f; g) is equal to the primitive part of the �rst non-zero
polynomial Sd.

In the case S0 6= 0, the least integer e, if it exists, for which Se has a positive
degree in x, will be called exponent of f and g. The corresponding polynomial Se

will then be called the eliminant of f and g.
Wu's elimination method consists the following four replacement rules[19]. Here,

we suppose PS is a non-empty polynomial set.

Rule 1. For any polynomial p 2 PS, if p = p1 � p2. We replace PS by polynomial sets
PS1 and PS2 consisting of same polynomials as PS with p replaced by p1 and
p2 respectively.

Rule 2. Suppose the dominant class of PS is c > 0. Let f be the polynomial with class
c and cdeg(f) = d the dominant degree, g be any other polynomial in PS with
cls(g) = c, S0 the resultant of f and g with respect to variable xc. Replace
PS by PS1 consisting of same polynomials as PS but with f and g replaced
according to the following rules.

2.1 If S0 = 0 then replace f and g by Sd, where d = degxcGCD(f; g).

2.2 If S0 6= 0 and Se be the eliminant of f and g, then replace f and g by S0
and Se.

2.3 If S0 6= 0 and the eliminant is non-existent, then replace f and g by f
and S0.

Applying Rule 2 to PS1 again, until the dominant class is 0. We get a triangular
set TS.

Rule 3. If the initial of some polynomial fi+1 in TS is not reduced with respect to
the partial triangulated set TSi, formed of polynomials in TS preceding fi+1.
Compute the pseudo-remainder r of fi+1 with respect to TSi.

3.1 If cls(r) = cls(fi+1), replace TS by TS 0 consisting of same polynomials as
TS but with fi+1 replaced by r.

3.2 If cls(r) < cls(fi+1), then apply replacement rules to ffrg
S
TSig to �nd

an ascending set ASi. If ASi is contradictory, then the zero set of PS
is empty; otherwise, apply the replacement rules to PS again over the
algebraic extension �eld generated by ASi.
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Rule 4. For each ascending set AS obtained by preceding rules applied to PS, compute
the pseudo-remainder set RS of polynomials in PS with respect to AS, replace
AS by PS 0 = AS

S
RS. Apply rules to PS 0 until the pseudo-remainder sets of

PS with respect to AS are empty.

Applying replacement rule 1-4 whenever possible. Ultimately, we have the fol-
lowing theorem.
Zero Decomposition Theorem[19] There is an algorithm so that for any polyno-
mial set PS there will be a decomposition of the form

Zero(PS) =
X
k

Zero(ASk=Jk); (5)

in which each ASk is an ascending set while Jk is the product of all initials of poly-
nomials in ASk.

Example 1 PS = ff1(x; y; z); f2(x; y; z); f3(x; y; z)g with x � y � z and

f1 = x2 � xy + y2 � 1;

f2 = 2xy + yz � 3z2;

f3 = yz + x2 � 2z2:

Step 1. Classify the polynomials in PS into two polynomial sets.

PS = [[f1] ; [f2; f3]]

Step 2. Compute the subresultant chain of f2; f3, we get

S1 = yz � 4xy + 3x2;

S0 = 17x2y2 � 2y3x� 24yx3 + 9x4:

Step 3. Since S0 6= 0 and degz(S1) = 1 > 0, by Rule 2.2, replace f2; f3 by S0; S1. Let

PS1 = [[f1; S0] ; [S1]] ;

Step 4. Compute the subresultant chain of f1; S0,

S 0

1 = �2xy + 7yx3 � 6x4 + 15x2;

S 0

0 = 127x8 � 294x6 + 171x4 � 4x2:

By Rule 2.2, replace f1; S0 by S 0

0; S
0

1. Let

TS1 = [[S 0

0] ; [S
0

1] ; [S1]] :
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Step 5. Form the pseudo-remainder of S1 with respect to ascending set [S 0

0; S
0

1],

r = 6zx4 � 15x2z � 45x5 + 54x3:

By Rule 3, replace S1 by r,

TS1 = [S 0

0; S
0

1; r]:

Step 6. The pseudo-remainder set of PS with respect to TS1 is empty. Then

Zero(PS) = Zero(TS1=(I1I2)) +
2X

i=1

Zero(PS + TS1 + Ii);

where

I1 = ini(S 0

1) = �7x
3 � 2x = �x(7x2 + 2) = �p1 � p2;

I2 = ini(r) = 6x4 � 15x2 = 3x2(2x2 � 5) = 3p21 � p3:

Step 7. Apply Rule 1 to the factors of I1 and I2, we have

2X
i=1

Zero(PS + TS1 + Ii) =
3X

i=1

Zero(PS + TS1 + fpig):

Step 8. For i = 2; 3, it is easy to check the zero sets are empty. For i = 1, repeat the
preceding steps, we will get

Zero(PS + TS1 + fp1g) = Zero([x; y2 � 1; yz]):

Finally,
Zero(PS) = Zero(TS1=(I1I2)) + Zero([x; y2 � 1; yz]):

Now, it is easy to get all eight solutions of PS as

x 1 -1 -0.156 0.156 1.13 -1.13 0 0
y 1 -1 -1.06 1.06 0.747 -0.747 1 -1
z 1 -1 -0.556 0.556 -0.637 0.637 0 0

3 Polynomial System Solving

We consider PS = fp1; : : : ; psg be a polynomial set with pi 2 C[x1; : : : ; xn] whose
coe�cients have speci�ed numerical values. Unlike most papers on polynomial solv-
ing, here we do not assume s = n or the zero set of PS be zero-dimension. Our
meaning of �nding the common zeros of PS is to decompose the zero set as (5). If
all coe�cients in PS be assumed to be exact as rational numbers, implement Wu's
elimination method in exact arithmetic, we could decompose the zero set of PS as

6



in section 2. Otherwise, some of the coe�cients in PS are only known to a speci�ed
level of accuracy. Then PS represents an equivalent class PS of polynomial setsgPS and the members of PS cannot be distinguished in the given context. Thus,
according to [15], the concept of a zero has to be widened to :

z 2 Cn is a pseudozero of PS () 9gPS 2 PS; jpi(z)j � �; pi 2gPS:
for a speci�ed small number � > 0. In the following, we de�ne k p k be the 1-norm
of the coe�cient vector. We show how to stabilize Wu's elimination method in �nite
precision arithmetic.

3.1 Univariate Case

Let PS = fp1; : : : ; psg with pi 2 C[x]. The zero decomposition in (5) is actually:

Zero(PS) = Zero(GCD(p1; : : : ; ps)):

There are a lot of algorithms available for computing the GCD of univariate poly-
nomials with inexactly known coe�cients. [6][7][9][10][13][14]. Noda and Sasaki's
scaled Euclidean algorithm is simple, e�cient and stable. But it can produce an-
swers slightly di�erent than what we want. In the following, we present a new
algorithm that modi�ed Noda and Sasaki's method to avoid unsatisfactory results.

Algorithm A(Approximate GCD of two univariate polynomials with accuracy �).
Given nonzero polynomials f and g in C[x] with accuracy � and degx(f) � degx(g),
this algorithm calculates an approximate GCD of f and g with accuracy �.

A1. [Initialize] Set p1  f , p2  g.

A2. [Iteration] Compute the remainder r and quotient q of p1 and p2.

A3. [Finished?] If k r k� �, set p1  p2, p2  r=max(1; k q k). Go back to A2.

Otherwise, compute the remainder r and quotient q of g and p2.

If k r k� � then set p1  g, p2  r=max(1; k q k). Go back to A2.

Otherwise, compute the remainder r and quotient q of f and p2.

If k r k� � then set p1  f , p2  r=max(1; k q k). Go back to A2.

Otherwise, the algorithm terminates, return p2=ini(p2).

Example 2

f = 3:x7 � 1:x + 3:x6 � 1:;

g = x5 + 4:x+ 1:00001x4 + 4:00004:

7



Suppose � = 10�4.

Numbering intermediate remainder in A2 of Algorithm A properly, we obtain a
sequence of polynomials

p3 = �:333333x� :333373� 4:00000x3 � 4:00000x2 � :100002 � 10�4x4;

p4 = :333332x+ :333373 + 4:00000x2 + 3:99999x3;

p5 = :250001 � 10�9x� :625003 � 10�9x2;

Since k p5 k� �, compute the remainder and quotient of g and p4:

r = 4:00694x+ 4:00698� :295158 � 10�5x2;

q = :250000x2 + :192706 � 10�5x� :208353 � 10�1:

Since k r k> �, replace p1 by g and p2 by r. Repeat A2, we obtain

p3 = 4:00694x+ 4:00698;

p4 = 0:186850 � 10�8:

Check the termination, we will �nd the approximate GCD of f and g with accuracy
10�4 is p3=lcoe�(p3) = x + 1:00001. We remark that algorithm in [13] stops after
k p5 k� �, and returns a degree-3 GCD which is completely spurious.

The normalization of the remainder is crucial in the algorithm. The analysis of
numerical stability of the algorithm is similar to [13].

3.2 Multivariate Case

Let PS = fp1; : : : ; psg be a polynomial set with pi 2 C[x1; : : : ; xn]. We can use (3)
to compute the subresultant chain to �nd the pseudo-remainder, eliminant, resul-
tant and GCD. But compute the determinant of a polynomial matrix is not easy.
Actually, we have the following more e�cient algorithm which modi�ed [2][4] to
numerical case.

Algorithm S(Approximate subresultant polynomial remainder sequence of two mul-
tivariate polynomials with accuracy �). Given nonzero polynomials f and g in
[�x1; : : : ; xn] with accuracy �, lv(f) = lv(g) and cdeg(f) � cdeg(g), this algorithm
calculates an approximate subresultant polynomial remainder sequence of f and g
with accuracy �.

S1. [Initialize] Set L [g; f ], p1  f , p2  g, 
  1, �  1, i 3.

S2. [Iteration] Set d cdeg(pi�2)� cdeg(pi�1), r  nprem(pi�2; pi�1).
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If k r k� � then go to S3.

Otherwise, set pi  nquo(r; normal(� � 
d))), L CONS(pi; L);

�  ini(pi�1), 
  
1�d�d, i i+ 1.

S3. [Finished?] If k r k� � or degx(r) = 0 then set L INV(L), return L.

Otherwise, go back to S2.

The function CONS(pi; L) appends pi to the list L and INV(L) reverses the list
L. Note that the division to get pi in S2 is exact if the coe�cients are exact rational
numbers. Otherwise, we impose the similar normalization of quotient as in the case
of univariate polynomials. If cls(g) = 0 then nquo(f; g) = f=g. Otherwise, suppose
the pseudo-remainder r and quotient q of f and g with respect to x = lv(g) be
calculated by

r = ini(g)d f � q g; d = degx(f)� cdeg(g) + 1 > 0: (6)

If k r k = k ini(g)d k� � then

nquo(f; g) = nquo
�
q; ini(g)d

�
:

Otherwise, return f=k g k as the quotient. Since the class of divisor decreases, �nally,
we can stop to get a polynomial divided by a number. Let q; d be the same in (6),
the normalizations of the pseudo-remainders and polynomials are

nprem(f; g) = r=max(k ini(g)d k; k q k);

normal(f) = f=k f k:

See [13] for the analysis of numerical stability of the algorithm.

Example 3 Suppose � = 10�5,

p1 = 2y5 + xy4 + x2y + 2x+ 2xy2 + 4y + y4 + xy + 2;

p2 = 6:y3x+ 6:y3 + x4 + 3:x2y2 + 6:xy2 + 1:00001x

+2:yx3 + 2:00002y + x3 + 3:y2 + 1:00001:

The subresultant polynomial remainder sequence(up to sign) of p1 and p2 com-
puted by the above algorithm is

p3 = 432:x4y2 + 1296:x2y2 + 1296:x3y2 + 432:xy2 + 216:x5y + 2256:00x3y

+2856:00xy + 48:x7y + 3456:x2y + 912:000y + 48:x6y + 960:000x4y

+1776:00x+ 24:x8 + 1776:00x3 + 456:000 + 2616:00x2 + 24:x6
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+528:000x4 + 48:0004x5 + 48:x7;

p4 = 21696:0x8y + 173632:x5y + 16533:3x9y + 64:x13y + 30912:1x7y + 7701:34y

+52288:0xy + 153472:x2y + 254698:x3y + 1600:00x11y + 106:667x12y

+64:x14y + 7552:00x10y + 262336:x4y + 76821:5x6y + 21:3333x15y

+29994:7x+ 19114:6x9 + 853:335x12 + 102880:x2 + 258517:x4

+12042:6x10 + 53866:8x7 + 125226:x6 + 204085:x3 + 3850:67

+217984:x5 + 4576:00x11 + 42:6667x15 + 26304:0x8

+64:x14 + 85:3337x13 + 10:6667x16;

and k p5 k� �. Actually, apply approximate GCD to the coe�cients of p4, we will
�nd the primitive part of p4 is

primitive(p4) = 2:y + 1:x+ 1:

4 Experimental Test

We report here on the results of our algorithms applied to two examples. The
algorithms are implemented in Maple V.

Example 4 This example is cited in [16]. Consider two ellipses which intersect with
angles not far from 90� in four well-separated real points. The associated quadratic
equations in x; y have real rational coe�cients with nontrivial denominators and
numerators. p1 and p2 are their decimal approximations to seven digits.

p1 = 1:027748y2 � :467871xy + 2:972252x2 + :662026y + 0:0785252x� 3:888889;

p2 = 3:958378y2 + :701807xy + 1:041622x2 � 0:0785252y + :662026x� 3:888889:

With lexicographic term order, x � y, the exact rational Gr�obner basis of this
system is (displayed to 7-digits)

g1(x) = x4 � 0:134646x3 � 2:107266x2 + 0:242335x+ 1:009172;

g2(x; y) = y � 1:355154 � 1016x3 � 1:240075 � 1016x2 + 1:553930 � 1016x + 1:302800 � 1016:

It has been pointed in [16], if we compute the solutions of g1 to accuracy less than
34 digits, there are no meaningful results for two y�components. By our methods,
suppose e = 10�5, we get the zero decomposition of p1; p2 as

Zero(fp1; p2g) = Zero(fg1; g2g=I1) + Zero(ff1; f2g):

Where I1 is the initial of g2 and

g1 = 120:9999x4 � 16:29212x3 � 254:9791x2 + 29:32250x+ 122:1098;

g2 = �2:573291xy + 10:69477x2 + 2:701253y � :3695634x� 11:39689:
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Solve g1 for Digits = 10(the number of digits carried in 
oats),

x = �1:204415; �:7603909; 1:049726; 1:049726:

Substitute the �rst two zeros to g2, the initial I1 is nonzero, and we get

y = �:7865145; 1:058881:

which are exact to six digits. Evaluate I1 at the last two zeros, we �nd it is less
than 10�5. Now, we consider another branch

f1 = 1:000000x� 1:049727;

f2 = 2:254914y2 + :3749366y � 1:165602:

There are two sets of solutions

fx = 1:049727; y = �:8068975g;

fx = 1:049727; y = :6406222g:

Substitute the solutions to p1; p2, the error is less than 10�5.
For this example, using Maple's fsolve, it only gives one set of solutions corre-

sponding to fx = 1:049727; y = �:8068975g: In order to �nd the other three roots,
we have to give appropriate range informations.

Example 5 This example appeared in [20].

p1 = ty8 + y3x + 3;

p2 = 4x2 + 3xy + y2 + 2:

Suppose t = 10�4 be a small number. The Gr�obner basis with lexicographic
term order x � y is

g1 = 4096x16 + 16384x14 + 2308672x12 + 4648672x10 + 401969795x8

+600322168x6 + 467731792x4 + 385520256x2 + 56310016;

g2 = 8349641086351584263053068672y+ 42640543834312116938843924992x

+52905962762889785619017231079x7+ 64447251228171657084673721132x5

+33813977062020986431284887152x3+ 528873020288802930634680416x9

+304378975983140261643437376x11+ 2014115039566951041531904x13

+541204990029293392547840x15:

It is obvious that we have to compute the roots of g1 to high accuracy to get
reasonable solutions of y due to the large coe�cients in g2. For Digits = 10, the error
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of some solutions are about 1. Compute the zero decomposition by our subresultant
method, we get

Zero(fp1; p2g) = Zero(ff1; f2g);

where f1 is the same as g1 and f2 is

f2 = (49496x3�19904x+93x7�252x5)y+30016+364x8+350x6+119412x4+59696x2:

Substitute the solutions of g1 to f2, we get the solutions of y�component which are
exact to �ve digits, i.e., the error is less than 10�5. It has been pointed in [16], large
coe�cients originate through S-polynomial formation or reduction of a polynomial
with a small leading coe�cient and some other coe�cients with a modulus of order
1, combined with another polynomial whose matching coe�cient is of order 1. On
the contrary, for subresultant chain, small leading coe�cient does not cause large
coe�cients. It can be seen from the above example. In fact, we have the following
proposition.

Proposition 4 Let f and g be two multivariate polynomials in K[x1; : : : ; xr]. Sup-
pose lv(f) = lv(g) = x and m = cdeg(f); cdeg(g) = n;

f = fmx
m + � � �+ f0; (7)

g = gnx
n + � � �+ g0: (8)

If fm = 0, gn 6= 0, then consider

f = fm�1x
m�1 + � � �+ f0:

We have
Sj(f; g) = �Sj(f; g)=bn; for j < min(m� 1; n):

Similarly, if fm 6= 0 and gn = 0, then consider g as g of degree n� 1, we have

Sj(f; g) = �Sj(f; g)=am; for j < min(m;n� 1):

5 Conclusion

Polynomial equations used to describe practical problems usually have a limited
meaningful accuracy. For a well-condition system, a small uncertainty in its data
must not imply large uncertainties of its solutions. Gr�obner basis is not suitable
for this purpose [16]. Our algorithm is more stable due to the special properties of
subresultant chain. Meanwhile, we also notice that the algorithms based on sym-
bolic elimination and �nding roots of a single polynomial have to be implement in
high-precision arithmetic. It has been shown by Wilkinson[17] that the problem of
�nding roots of a univariate polynomial may be ill-conditioned for high degree poly-
nomials. However, high-precision arithmetic will slow down the overall computation
signi�cantly. So we start with low accuracy and add the precision digits in the case
the algorithms fail. More examples and analysis will appear in our forthcoming
paper.
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