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Abstract

This paper reports the implementation of a system for the creation
of rational automata: automata that communicate with one another,
display curiosity, learn and are creative. The author calls the imple-
mented automata narrow minds. The formal mathematical structure
of a rational automaton is defined, a sketch is given of how they work
and how they interact, and a sample dialogue between narrow minds
is presented. Equation processing plays a central role. It is argued
that basic everyday thinking and basic mathematical thinking, though
very different in some ways, can be implemented using the same mech-
anisms.

The narrow minds system takes a step toward the productive so-
cial interaction of rational and, in particular, mathematically capable
autonomous computer entities. Its implementation rests upon two
fundamental computational paradigms: equational programming and
object-oriented programming, the one for implementation of simple
intelligence, the other for implementation of simple social interaction.
The system user can control the level of intelligence of the narrow
minds that are created, how they interact in dialogue, how they speak,
and, to some extent, how they think. Parallelism is intrinsic to the
system, as it is to human communities.

Some extensions are outlined, and the relationship is considered of
the work reported here to automatic theorem-proving.

The paper begins by defining a class of automata that I call rational au-
tomata or, informally, narrow minds. Narrow minds are capable of dialogue
with one another. They display human-like characteristics. They learn and
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forget. They may have different personalities. They may co-operate or com-
pete. In the second part of the paper the implementation of a Narrow Minds
system is discussed and a sample dialogue generated by an implemented sys-
tem is presented. Implementation involves two paradigms of computation:
object oriented programming and equational programming. In the final part
of the paper we discuss some extensions, the relationship of these ideas to
automated theorem proving and briefly speculate on potential applications.

1 Positive Rational Automata

Positive rational automata are particular kinds of automata for which the
inputs and outputs are equations. Some preliminary definitions are needed.

Our notion of automaton is a standard one. An automaton A is a 4-tuple
〈Q,X, s, o〉 where

• Q is the set of states,

• X is the set of messages,

• s : Q×X → Q is the next state function, and

• o : Q→ X is the next output function.

If at time n the automaton is in state q[n] and registers an input u[n] ∈ X,
then at time n+ 1 it will move to state q[n+ 1] := s[q[n], u[n]] and compose
the output o[q[n+ 1]] ∈ X.

An equational language L is a set of equations over some algebraic signature
Σ; each equation is an ordered triple α =i β, where α and β are terms of the
signature. A consequence relation over L is a relation |=: 2L → L from sets
of equations to equations that satisfies

• if ψ ∈ Γ then Γ |= ψ;

• if Γ |= ψ then Γ ∪∆ |= ψ;

• if Γ |= θ and ∆∪{θ} |= ψ then Γ∪∆ |= ψ.

A positive rational automaton 〈L, |=, Q,X, s, o〉 with consequence relation |=
over an equational language L is an automaton 〈Q,X, s, o〉 for which

• the elements of Q are sets of equations from L;

• the elements of X are equations from L;

• s[Γ, φ] is a set of consequences under |= of Γ ∪ {φ}.
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2 Dialogues

A dialogue is a pair 〈G, ν〉 where G = {1, 2, . . .} is a set of positive rational
automata (all with the same language and state space, but with different
consequence relations |=i and different information processing functions si
and oi) called the participants in the dialogue, and ν : N → G is a sequence
of participants. At each instant n ∈ N the output of a participant ν[n], called
the speaker, is registered by each participant as its next input. The outputs
of the successive speakers are called the utterances of the dialogue. Of all
the outputs available from the participants at time n only the one that is
uttered by the speaker is registered by the participants.

The sequence u of utterances is called the record of the dialogue. It is deter-
mined by an initial utterance u[0], the initial states qi[0] of the participants,
their thinking processes, oi and si, and the sequence of speakers ν:

u[1] = oν[1][sν[1][qν[1][0], u[0]]]

and, for n > 1,

u[n] = oν[n][sν[n][qν[n][n− 1], u[n− 1]]]

The course of the dialogue will be completely predictable if all this infor-
mation is known; and it will be unpredictable to the extent that it is not
known. We say that a description (or partial specification) of a dialogue
is non-deterministic if it does not support, at every stage, exact predic-
tion of the next utterance. To a listener, whose only information about
the dialogue is the sequence of utterances so far, the dialogue is thoroughly
non-deterministic in this sense. Nevertheless it is somewhat predictable. In
a realistic dialogue participants will think in parallel, and the next speaker
will be the first to be ready; this can be simulated in a serial implementation.

I will refer to the participants in a dialogue as narrow minds. In the current
implemented system discussed in this paper, the underlying algebra signature
is as simple as possible: the semigroup signature. Each term is a string of
generators, called words ; a word may include tags indicating, for example.
who uttered it.

3 Implementation

Narrow Minds is an implemented system for the creation of rational au-
tomata and of dialogues between gatherings of rational automata. The im-
plementation is of interest because it naturally involves two mainstays of
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modern computing: object oriented programming and equational program-
ming.

At the highest level of the system we have an object-oriented program of
which the main class is the class of narrow minds. The user creates an object
of this class by giving values for its many attributes; values that specify its
initial state and the methods by which it is to construct its successive states
and outputs. In a dialogue, each utterance is a message from the speaker to
the other participants.

Narrow minds process equations. The engine that drives the Narrow Minds
system is the Knuth-Bendix algorithm. (See [1] or [2].) It is the appropri-
ate equational algorithm for a system in which terms are simple strings of
words. For algebras of other signatures, other equational algorithms will be
appropriate. For example, to extend the narrow minds system to encompass
rational discussion of geometric structures, including inferences about such
structures, the Buchberger algorithm may be used. (See [3], for example.)

It is not possible here to present a detailed discussion of the ways in which
equational programming supports inference, but an example will suffice to
show that it does. Suppose that the knowledge of a narrow mind ξ includes
the equations:

father Lisa =i Homer

wife father =i mother

wife Homer =i Marge

Then among the equational consequences that ξ may output is the equation

mother Lisa =i Marge

Note that there are other equational consequences, such as

Homer wife Homer =i father Lisa Marge,

that one would not want ξ to output. Similarly, from today =i Monday and
today =i Tuesday it should not be inferred that Tuesday =i Monday. A
critical feature of our implemented narrow minds is that their consequence
relations are stronger than equational consequence, so that unwanted utter-
ances are not generated.

4 A Sample Dialogue

The following is the transcript of part of an interactive session with an im-
plemented Narrow Minds system. User input is underlined. At the outset,
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the user has created the dialogue d123 with three participants, p1, p2 and
p3; in particular, the participants have been given various attributes such as
their names (“Lisa”, “Homer” and “Marge”, respectively) and their initial
knowledge states.

The utterances of the participants, printed here, are generated and spoken
in real time. Utterances are rendered in ordinary English, which though not
always grammatically perfect, is always comprehensible. One of the purposes
of the system is to serve as a test-bed for the translation from the formal
internal language to natural language.

You will see that p1 learns a good deal in a short time — not only what
she has heard but facts that can be inferred from what she has heard. You
will also see, in the very last utterance that narrow minds may disagree; the
disagreement as to Lisa’s father depends upon the introduction, not discussed
in this paper, of a feature that takes us beyond positive rational automata:
falsity. Rational automata with this additional capability can disagree, argue
and lie.

OUTPUT[KNOWLEDGE, p1]

I know that: The father of Lisa is Homer. The mother of Lisa

is Marge. Myself is Lisa. The kind of day is good.

RUN[d123,15]

MARGE:

Sue is my mother.

LISA:

My father is Homer.

HOMER:

I know that your father is me.

42 is my age.

LISA:

Marge is my mother.

HOMER:

What is my age?

LISA:

Homer, your age is 42.

Me is me.

MARGE:

The father of father is grandfather.

LISA:

The father of Homer is my grandfather.
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HOMER:

I know that your grandfather is my father.

The sex of Marge is female.

LISA:

Me is myself.

MARGE:

Lisa, I know that you is my smart daughter.

My father is Bill.

LISA:

Your grandfather is the father of Bill.

MARGE:

I know that my grandfather is the father of Bill.

My age is 32.

LISA:

My father is Homer.

MARGE:

I don’t believe that your father is Homer.

Your grandfather is the father of Flanders.

OUTPUT[KNOWLEDGE, p1]

I know that: The age of Homer is 42. The age of Marge is 32.

The father of father is grandfather. The father of Lisa is

Homer. The father of Marge is Bill. The sex of Marge is

female. The grandfather of Lisa is the father of Homer. The

grandfather of Marge is the father of Bill. The kind of day

is good. The mother of Lisa is Marge. The mother of Marge is

Sue. Me is Lisa.

5 Extensions

Currently the powers of the implemented Narrow Minds system are rather
limited. There are many ways in which they can be extended. One is to
enhance the expressiveness of the utterances of the participants, allowing the
formation of more elaborate sentences by introducing conjunction of equa-
tions and exclusive disjunction, with rules that make the set of sentences a
Boolean ring R[⊕, ., T, F ]. We call the resulting structures equality algebras ;
they are algebras equipped with a binary Boolean ring-valued operator =i

which satisfies

• (a =i a) = T ; and
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• for any operator f with codomain R

(a =i b).f [a] = (a =i b).f [b].

The properties of equality algebras and, in particular, their relationship with
lattices of congruences over algebras are investigated in [4]. See also [5] and
[6].

Rational automata enriched in this way support the generation of simple
explicit theorem statements, such as the following:

(father x =i Homer).(wife Homer =i Marge)⇒ (mother x =i Marge)

(“If Homer is the father of a person and Marge is the wife of Homer then
Marge is the mother of that person.”) A narrow mind whose knowledge
includes the equation wife father =i mother may prove such an assertion
by using the Boolean ring reduction φ⇒ ψ = φ.ψ + φ+ T together with its
basic equation processing.

A further extension is to internalize equality of sentences; then the map that
takes each equation φ to the equation φ =i T is a modal operator. See
[7]. Exploration of these connections with propositional and modal logics is
continuing.

6 Rationality versus Theorem Proving

Narrow minds display rational behaviour. In particular each utterance of a
narrow mind is correct1 for its current knowledge state: it is a theorem. So
what is the relationship of this theory to automated theorem proving? We
briefly consider this question.

The fundamental difference between main-stream theorem proving systems
and the Narrow Minds system is that the one recognizes while the other gener-
ates. Automated theorem provers recognize theorems by providing proofs. In
the main-stream logic-based approach to automatic theorem proving, proof
discovery is essentially a search process: a path must be found from the
hypotheses to the conclusion, each step of which is the application of an
inference rule. Nothing can be concluded form failure to find a proof. I
have argued elsewhere (in [8]) that the task of proving difficult theorems
using independent inference rules (and axioms) is practically intractable for
stand-alone theorem provers such as OTTER. This is not to say that such

1It is easy to see how to extend our notion of narrow mind to allow duplicity — the
uttering of equations that are not correct — but we shall not consider that here.
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provers are without value, merely that human input in various forms, such
as provision of the right lemmas, plays an essential role.

Equational theorem provers based on the pioneering work of Wu and Buch-
berger (see [9], [10], [11] and [3]) have come to prominence in recent years,
mainly because of their extraordinary success in proving geometry theorems.
They work quite differently, the proving process being generation rather than
search. The Narrow Minds system belongs squarely in this camp. It adds
new perspectives to the theorem-proving point of view. Narrow minds are
not just passive respondents to requests for information: they ask for infor-
mation, they communicate, they co-operate or compete, and they learn from
one another. So far as I know the possibilities of using polynomial equations
for intelligent discourse between automata about geometric objects have not
yet been investigated.

It will be remarked, of course, that the theorems which are generated by
the Narrow Minds system are trivial. Remember, though that the quadratic
formula was at one time a great advance in the development of mathematics.
Narrow Minds systems open the possibility of a mechanized development
of mathematics which parallels its development by humans: development
through the social interaction of individuals that learn and are creative.

7 Conclusion

The potential applications of narrow minds are many. To take one example,
a simple adaptation of the current system, probably achievable quite easily,
would be to create autonomous, intelligent questionnaires (or questioners!):
rational automata that address multiple-choice questions to human subjects,
interpret the responses as equations, and make use of the information that is
inferred from the responses for the purpose of keying subsequent questions to
the distinctive characteristics of the person who is being interviewed. Other
possibilities, such as the making of applets with genuine autonomous intelli-
gence, will suggest themselves to the reader.

A final disclaimer is necessary. It is not claimed that narrow minds simulate
the processing that is performed by human brains. Indeed it seems that
narrow minds differ in an essential way from human minds since they process
phrases without having any external semantics for those phrases. What is
claimed is merely that dialogues between narrow minds simulate dialogues
between humans. It is conjectured that narrow minds can be engineered
which will pass an objective rationality test : fragments of dialogue between
them will be indistinguishable from fragments of dialogue in a play or in
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actual human conversation. I call such a test objective, since it requires the
judge to be a neutral observer, rather than, as in the Turing test [12], being
an active participant in the dialogue.
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