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Abstract

In this report we study the forward displacement analysis of a spe-
cial Stewart-Gough platform. The polynomial system describing the
problem is solved by matrix eigenproblem approach using exact and
numeric computation. The problem on the perturbation of the coeffi-
cients of the system is studied. A special procedure for computing the
Gröbner basis of such problem is presented to save time. Numerical
examples are given.

1 Introduction

The number of solutions of the multivariate polynomial system describing
the forward displacement analysis of Stewart-Gough platform is at most 40
[1,2]. But how to compute these solutions and their numerical stability are
still interesting problems.

In this report we present an approach for forward displacement analysis
of a special Stewart-Gough platform related to a hexapod-based machine
VAMT1Y newly designed in China [5].

The resulted polynomial system describing the problem is composed of 6
quadratic polynomials in 6 variables. We propose to solve this system by
matrix eigenproblem approach[3], i.e. to form a 40 × 40 matrix from the
Gröbner basis of the system and to read the solutions from its eigenvectors.
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A special procedure for computing the Gröbner basis of the system in total
degree ordering is designed for given geometric size of the platforms but
leaving the lengths of legs as parameters. The Gröbner basis is composed of
36 polynomials. 6 of them are linear combinations of the polynomials of the
original system, and others are obtained from 30 specific precisely selected
S-polynomials. Once it is computed, the Gröbner basis for any given set of
lengths of legs can be obtained within 20 sec. even on micro computer PII.

In general, the number of solutions of the multivariate polynomial system is
sensitive to the perturbation of coefficients of the system. For the system
concerned it may be changed from 40 to 64 if the coefficients of terms with
high degree are perturbed and the perturbed system may not still describe
the problem studied. But perturbations often appear in many cases, it causes
troubles to the calculation. In section 4 a simple way is proposed to com-
pensate for the perturbation and the effects are illustrated by examples in
section 6.

The computation of Gröbner basis and matrix is carried exactly by Maple,
and its eigenvectors by MATLAB using floating arithmetic double precision.

The main advantage of the proposed approach is that the computational
errors arise only in the last step, i.e. eigenvector computation, and uniformly
in some sense with respect to all 6 variables. This would be superior than
computing the values of variables from single variable polynomials one by
one successively for each solution.

Three testing examples are given for illustration and comparison.

The structure of the report is as follows: In section 2 we establish polynomial
system. In section 3 we briefly describe the main steps for solving the poly-
nomial system. In section 4 we deal with the perturbation. In section 5 A
simple procedure for computing Gröbner basis is presented. Three numerical
examples and some conclusions are given in section 6 and section 7.

2 The polynomial system

2.1 Coordinate

The 6 joints Bj of the base platform lie on two parallel planes with distance
z1. B1, B3 and B5 lie on a plane and form an equilateral triangle, similarly for
B2, B4 and B6 on the other plane. The line connecting the centers of these
triangles is perpendicular to planes. The sides B1B3 and B2B4 are parallel
etc. We may represent Bj in rectangular coordinates OXY Z as follows (Fig
1):

B1 (x1, 0, z1), B2 (x2, 0, 0)



Huang, Fu, Jiang & Wu

B3 (−1
2
x1,

√
3

2
x1, z1), B4 (−1

2
x2,

√
3

2
x2, 0)

B5 (−1
2
x1, −

√
3

2
x1, z1), B6 (−1

2
x2, −

√
3

2
x2, 0)

where x1 > 0, x2 > 0, z1 > 0.

The 6 joint points Mj on the moving platform are coplanar and lie on a
circle centered at M . M1M3M5 and M2M4M6 are two equilateral triangles.
Let MPQ be a plane rectangular coordinate on this plane and represent Mj

by M1 (p1, q1), M2 (p1, −q1)
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to describe the geometry, where p1 > 0, q1 < 0 (Fig 2):

Fig. 1 Fig. 2
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Let u1, u2, u3 be the direction cosines of
−→
MP in OXY Z, v1, v2, v3 for

−→
MQ and the coordinates of M be (x, y, z). Then the coordinates of Mj(j =
1, · · · , 6) in OXY Z are

(pj u1 + qj v1 + x, pj u2 + qj v2 + y, pj u3 + qj v3 + z).

2.2 The polynomial system

Let the lengths between Bj and Mj be lj, we have 6 distance equations
f1, · · · , f6.

Since
−→
MP,

−→
MQ are two orthogonal unit vectors, we have:

f7 := u2
1 + u2

2 + u2
3 − 1
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f8 := v2
1 + v2

2 + v2
3 − 1

f9 := u1 v1 + u2 v2 + u3 v3

These 9 quadratic polynomials above with 9 unknowns u1, u2, u3, v1, v2, v3,

x, y, z form the polynomial system describing problem.

3 The system solving

The main steps for solving the system are the following.

3.1 The system simplification

• We introduce 3 new variables u, v, w in order to simplify computation as
in [4]:

f10 := u− u1 x− u2 y − u3 z

f11 := v − v1 x− v2 y − v3 z

f12 := w − x2 − y2 − z2

Now we have 12 quadratic polynomials.

• f1, · · · , f6 can be simplified by f7, · · · , f12, the polynomials resulted are still
named f1, · · · , f6, but they are linear in u1, u2, u3, v1, v2, v3, u, v, w, x, y, z.

• Solve u1, u2, u3, v1, v2, v3 in terms of u, v, w, x, y, z from f1, · · · , f6

• Substitute u1, u2, u3, v1, v2, v3 in f7, · · · , f12 by their linear expressions just
obtained, then we get 6 quadratic polynomials g1, · · · , g6.

The problem becomes to solve the quadratic polynomial system g1, · · · , g6

with unknowns u, v, w, x, y, z.

3.2 Gröbner basis computation

The Gröbner basis of g1, · · · , g6 may be computed by Maple function gbasis
in total degree, inverse lexicographic ordering and u Â v Â w Â x Â y Â z,
but we prefer to do this by the proposed procedure in §5 to save time.

3.3 Matrix construction

Once we have the Gröbner basis, we may construct the matrix needed, with
respect to any variable, e.g. z as in [3].

3.4 Eigenvectors computation

Compute eigenvectors of constructed matrix by numeric software MATLAB
and read the solutions u, v, w, x, y, z from them.

3.5 The coordinates of joint points of moving platform

Now it is easy to compute the coordinates of Mj for real solutions reading
from eigenvectors.
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4 On the perturbation

When the values of parameters x1, x2, p1, q1, z1 are rational, the coefficients
of the high degree terms in g1, · · · , g6 computed above are rational, but the
coefficients of lower degree terms contain

√
3. If we compute Gröbner basis

of g1, · · · , g6 by Maple function gbasis, the coefficients of g1, · · · , g6 must be
rational, so we must first replace

√
3 by its approximate rational value. Let

g̃1, · · · , g̃6 be the polynomials resulted. They may be not a system describing
problem even for another set of lengths of legs.

But leaving the values of x1, x2, p1, q1, z1 unchanged, we may compute another
set of l̂j’s such that

√
3 does not appear in the corresponding polynomials ĝj

and ĝ4 ≡ g̃4, ĝ5 ≡ g̃5. It just needs to solve a linear system to determine
l̂j’s. In addition, it is easy to see that αj := ĝj− g̃j (j = 1, 2, 3) are constants.

And when g̃i → gi , then αi → 0, l̂j → lj.

Since ĝ1, · · · , ĝ6 form a polynomial system describing the problem, its solu-
tions can be considered as good approximation of those solutions required,
and modified by any numerical method if necessary.

5 The process for computing Gröbner basis

5.1 Preparation

For given values of parameters x1, x2, z1, p1, q1 of platforms, and leaving lj as
parameters, let a1, a2, a3 denote the coefficients of x, y, z in g4 and a4, a5, a6

denote the coefficients of x, y, z in g5 respectively. Since aj’s are linear com-
bination of l2j , we may express l2j linearly in terms of aj’s. Substituting lj’s by
their expressions in aj’s in g1, · · · , g6, we get f1, · · · , f6. The Gröbner basis
of f1, · · · , f6 is composed of 36 polynomials gb1, · · · , gb36.

5.2 gb1, · · · , gb6

Let gb1 := f6. gb2 and gb3 are linear combination of f4, f5 in order that the
leading power products of them are v x and u x respectively. gb4, gb5 and
gb6 are linear combination of f1, f2 and f3 in order that the leading power
products of them are v2, u v, and u2 respectively. Reduce gbi by gbj for j < i
and i ≤ 6.

5.3 gb7, gb10, · · · , gb14, gb16, gb17

Compute 8 S-polynomials of gbi and gbj, where (i,j) are (1,2), (1,3), (2,3),
(2,4), (3,5), (3,6), (5,6), (4,5). Then compute the linear combination of them
in order that the leading power products are w y2, w x y, w2 y, v w y, uw y, w2 x,

w2 v, w2 u and name them gb7, gb10, · · · , gb14, gb16, gb17 respectively. Reduce
gbi by gbj for j < i and i ≤ 17.

5.4 gb8, gb9, gb15, gb29, · · · , gb35



ATCM99

Compute 10 S-polynomials of gbi and gbj, where (i,j) are (3,10), (3,13),
(3,14), (4,12), (5,12), (5,13), (5,16), (5,17), (6,13), (6,17). Then compute
the linear combination of them in order that the leading power products are
v y2, u y2, w3, w2 z2, v w z2, uw z2, y3 z, x y2 z, y4, x y3 and name them gb8, gb9, gb15,

gb29, · · · , gb35 respectively. Reduce gbi by gbj for j < i and i ≤ 35.

5.5 gb23, · · · , gb28

Compute 6 S-polynomials of gbi and gbj, where (i,j) are (2,8), (3,9), (7,8),
(7,9), (5,8), (4,8). Then compute the linear combination of them in order
that the leading power products are y2 z2, x y z2, w y z2, v y z2, u y z2, w x z2

and name them gb23, · · · , gb28 respectively. Reduce gbi by gbj for j < i and
i ≤ 35.

5.6 gb18, · · · , gb22

Compute 5 S-polynomials of gbi and gbj, where (i,j) are (7,23), (7,25), (8,23),
(8,26),(9,27). Then compute the linear combination of them in order that
the leading power products are y z3, x z3, w z3, v z3, u z3 and name them
gb18, · · · , gb22 respectively. Reduce gbi by gbj for j < i and i ≤ 35.

5.7 gb36

Compute S-polynomial of gb1 and gb19. Then it is reduced by gbi’s in order
that the leading power product is z5 and name it gb36.

5.8 Check these gbi being Gröbner basis of f1, · · · , f6

We remark that 30 S-polynomials computed yields 30 Gröbner basis poly-
nomials, and there is no S-polynomial which would be reduce to zero in the
process of reduction. Furthermore, the leading coefficients of all polynomials
appearing in the process of computation are constants, independent on aj’s
i.e. lj’s.

6 Examples

We give some results of 3 examples in the following. The values of parameters
of the platforms are the same for all examples:

x1 =
357

200
, x2 =

189

125
, z1 =

267

1000
, p1 =

37

200
, q1 =

−19

250

but the sets of lengths lj of legs are slightly different. All matrices in examples
are constructed with respect to z. And every matrix has 2 real eigenvectors
and 38 complex ones.

Ex. 1 :

The lengths of lj’s are :

l1 = l3 = l5 =
3

1000

√
618785 (≈ 2.35989)
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l2 = l4 = l6 =
3

1000

√
640745 (≈ 2.40140)

All coefficients of gj’s are rational.

Ex. 2 :

Modify lj’s in Ex.1 to:

l1 =
47

20
, l3 =

237

100
, l5 =

119

50
, l2 =

241

100
, l4 =

239

100
, l6 =

12

5
√

3 appears in gj, and it is approximated by 173
100

Ex. 3 :

The lj’s are determined by method in §4 from those of Ex. 2.

l1 =
47

20
= 2.35, l2 =

241

100
= 2.41(unchanged)

l3 =

√
112813

20000
− 3287

240000

√
3 (≈ 2.37001)

l5 =

√
112813

20000
+

3287

240000

√
3 (≈ 2.37999)

l4 =

√
114721

20000
− 82867

6000000

√
3 (≈ 2.39001)

l6 =

√
114721

20000
+

82867

6000000

√
3 (≈ 2.39999)

α1 ≈ −.8492e− 4, α2 ≈ −.3794e− 4, α3 ≈ .5137e− 4

The result of 3 examples are given in table 1 and 2, where Lj is the distance
between the computed Mj and given Bj, and dj = Lj − lj.
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The results obtained from one real eigenvector:(table 1)

Ex. 1 Ex. 2 Ex. 3
u -.00000002113295 .1384593466955643 .1384317581249299
v .00000001600577 .3735338626155642 .3734994203428016
w 4.00000002698952 4.004893647362623 4.0049132100452
x -.00000000509285 .01925939437717648 .0192545199547591
y .00000000232906 .04646279876284222 .04645454613271308
z 2.00000000753983 2.000590915314096 2.00059601471922
u1 1.00000005813645 .9947550226737925 .9947739151343103
u2 -.00000001330652 -.08150225172587074 -.081489232238558
u3 -.00000001579784 .0613073130515653 .061513274485924
v1 .0000000194937 .07048695643770426 .070523030743525
v2 1.00000002487649 .9840330397009512 .9840746127318993
v3 .00000001611049 .1633183358570836 .1631647786029377∑
u2
i 1.000000116 .9999387588047272 .9999995201404542∑
v2
i 1.000000048 .9999623130780718 .9999990862652355∑

ui vi .6000000565e-8 -.7104621543464e-4 -.21344446755e-6
L1 2.359886649587556 2.349956568499387 2.349999973377820
L2 2.401396469683635 2.409974340900660 2.409999972311437
L3 2.359886652769989 2.370028004847917 2.370005921429820
L4 2.401396472084417 2.390043300490847 2.390005935375818
L5 2.359886651519058 2.380013799038510 2.379994090386574
L6 2.401396468523582 2.399981458092913 2.399994078136531
d1 -.232727e-9 -.43431500613e-4 -.26622180e-7
d2 .959655e-9 -.25659099340e-4 -.27688563e-7
d3 .2949706e-8 .28004847917e-4 -.11224078e-7
d4 .3360437e-8 .43300490847e-4 .2826375e-8
d5 .1698775e-8 .13799038510e-4 -.1871919e-8
d6 -.200398e-9 -.18541907087e-4 -.14018378e-7
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The results obtained from other real eigenvector:(table 2)

Ex. 1 Ex. 2 Ex. 3
u -.00000000437184 .1974148137228609 .1974300502673288
v .00000002473035 .4056654265456342 .405719849361412
w 2.87274877695932 2.865564782863905 2.86554980183621
x -.00000000142812 .02756465660071426 .02756585119552948
y .00000000520151 .05313558950324184 .05314723172182714
z 1.69491851893156 1.691739265577902 1.691734381904142
u1 -.7375428871 -.7696201738654509 -.7696586780356295
u2 .675300363 .6289047770341943 .628997706081115
u3 -.600652254e-8 .1092611609629994 .1094834832251653
v1 -.675300337 -.5851643114599547 -.585090963680784
v2 -.7375428985 -.7635050109826924 -.7635120198435977
v3 .493347215e-8 .493347215e-8 .2733447919800437∑
u2
i 1.000000091 .999774431892099 .9999992280299726∑
v2
i 1.000000072 1.00012972048407 .9999994155291722∑

ui vi -.2690000003e-7 .5930435890991e-4 -.23146240359e-6
L1 2.359886649587556 2.349961452701369 2.349999991982228
L2 2.401396469683635 2.409977878703793 2.409999980188563
L3 2.359886652769988 2.370024705418375 2.370005898050535
L4 2.401396472084417 2.390035297403388 2.39000589711429
L5 2.359886651519058 2.380012352598532 2.37999406804247
L6 2.401396468523582 2.399985965234307 2.399994081300655
d1 -.232727e-9 -.38547298631e-4 -.8017772e-8
d2 .959655e-9 -.22121296207e-4 -.19811437e-7
d3 .2949705e-8 .24705418375e-4 -.34603363e-7
d4 .3360437e-8 .35297403388e-4 -.35435153e-7
d5 .1698775e-8 .12352598532e-4 -.24216023e-7
d6 -.200398e-9 -.14034765693e-4 -.10854254e-7

7 Conclusions

The numerical results of examples suggest that the matrix eigenproblem
approach for polynomial system solving cooperated with suitable Gröbner
basis computation works well for forward displacement analysis of Stewart-
Gough platform.

For example 1, there is an exact solution:

x = 0, y = 0, z = 2, u = 0, v = 0, w = 4



ATCM99

u1 = 1, u2 = 0, u3 = 0, v1 = 0, v2 = 1, v3 = 0

The computed solution in column 1 of table 1 is very close to it.

In example 1 and 3 the dj’s are small in comparison with those in example
2. One of the reasons is that the perturbed system is no longer a system
describing the problem associated to a set of leg lengths. It looks a good
strategy to use ĝj’s instead of g̃j’s.
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