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Abstract

Clifford algebra plays an important role in mathematics and physics,
and has various applications in geometric reasoning, computer vision
and robotics. When applying Clifford algebra to geometric problems,
an important technique is parametric representation of geometric en-
tities, such as planes and spheres in FEuclidean and spherical spaces,
which occur in the form of homogeneous multivectors. Computing a
parametric representation of a geometric entity is equivalent to fac-
toring a homogeneous multivector into an outer product of vectors.
Such a factorization is called outer product factorization.

When no signature constraint is imposed on the vectors whose
outer product equals the homogeneous multivector, a classical result
can be found in the book of Hodge and Pedoe (1953), where a suffi-
cient and necessary condition for the factorability is given and called
quadratic Pliicker relations (p-relations). However, the p-relations are
generally algebraically dependent and contain redundancy. In this
paper we construct a Ritt-Wu basis of the p-relations, which serves
as a much simplified criterion on the factorability. When there are
signature constraints on the vectors, we propose an algorithm that
can judge whether the constraints are satisfiable, and if so, produce a
required factorization.

1 Introduction

Clifford algebra is an important tool in modern mathematics and physics.
Because of its invariant representation for geometric computation, Clifford



algebra is gaining wider and wider recognition in fields like geometric reason-
ing, computer vision and robotics. This short paper contributes to solving
an often encountered problem in applying Clifford algebra, the problem of
outer product factorization.

Let K be a field whose characteristic # 2, and let V™ be a K-vector space of
dimension n. The Grassmann algebra A(V") generated by V" is a graded K-
vector space, whose grades range from 0 to n. The multiplication is denoted
by “A”, called the outer product. An element in the Grassmann algebra
is called a multivector, and an r-graded element is called an r-vector. Any
r-vector is called a homogeneous multivector.

Let {e1,€ea,...,¢,} be a basis of V. It generates a basis {e;; A---Ae;, | 1 <
i1 < ...<1i, <n} for the space A"(V") of r-vectors. Let A, be an r-vector,
then

A, = > @iyoin€iy N Neg (1)
1<i <. <ir<n
The list (a4, | 1 <3 < ... <. <n)is called the Pliicker coordinates of
A,. In this paper, we allow any order among the suffixes by requiring that
ai, .4, be anti-symmetric with respect to its suffixes.

The outer product of r vectors is called an r-extensor. For an r-extensor
A, = ay N -+ A a,, where the a’s are vectors, a vector + € V" is in the
subspace A, spanned by the a’s if and only if # A A, = 0. Therefore we can
use A, to represent the space A,. Since an extensor represents a subspace,
an important question is how to judge whether or not a homogeneous multi-
vector is an extensor, and how to factor an extensor. The factorization will
be unique up to a special linear transformation in the subspace.

In the book of Hodge and Pedoe (1953), there are two theorems that answer

the above question:

Theorem 1.1. An i-vector A, is an extensor if and only if its Plicker co-
ordinates a = (a4,

1 < li,....1l. < n) satisfy the following quadratic
Pliicker relations (p-relations): for any 1 < 43 < ... < i,-1 < n and any
1 <1 <... < Jgrp1 < n, the following equality holds:

r+1

Fi1~~~ir—17j1~~~jr+1 (a) : Z(_1)/\ail~~~ir—1j>\aj1~~~j>\—1j>\+1~~~jr+1 =0. (2)
A=1

Theorem 1.2. Let A, be an r-extensor with Pliicker coordinates (a;,.
I < iy,..0pt, < n), where a;.y, # 0. Let b, = (bljl,...,bljn)T, where
bik = aiy..i;_\ki;4y.0,- Then

Ar = (allmlr)l_rbl A A br. (3)




In the book of Iversen (1992), where the Grassmann algebra is replaced by
a nondegenerate Clifford algebra, Theorem 1.1 is reformulated elegantly as
follows, where the dot denotes the inner product in the Clifford algebra:

Theorem 1.3. An r-vector A, is an extensor if and only if for any (r — 1)-
vector X, _q,

A A (A, Xop) = 0. (4)

The set of p-relations (2) forms a Grobner basis for a convenient monomial
order. Furthermore, it has a structure of Hodge algebra (see DeConcini,
Eisenbud and Procesi, 1982). However, the p-relations are generally alge-
braically dependent, and contain redundancy when used as a criterion on
the factorability of a homogeneous multivector.

In this paper, we construct a Ritt-Wu basis (Wu, 1978), i. e., an irreducible
characteristic set, of (2). The number of relations in the basis is much smaller
than that in (2). The basis not only simplifies the criterion on the factora-
bility, but also yields an efficient way to reduce a polynomial of Plicker
coordinates by the Plicker relations.

When V" is equipped with an inner product, the Clifford algebra C(V")
generated by V" (¢f. Crumeyrolle, 1990) is linearly isomorphic to A(V").
When K =R, a nonzero vector x is said to be positive, or negative, or null,
if x-x > 0, or < 0, or = 0, respectively. The sign of = - x is called the
signature of . Let A, = ay A--- Aa,, where the a’s are mutually orthogonal
vectors and p of which are positive, ¢ of which are negative. The triplet
(p,q,r — p — q) is called the signature of A,.

The problem of outer product factorization in Clifford algebra is, given an
r-extensor, factor it into the outer product of p positive vectors, ¢ negative
ones and r — p — ¢ null ones, if the factorization is possible. An algorithm is
proposed in this paper to solve the problem.

2 Factorization in Grassmann Algebra

Let A, be anonzero r-vector with Pliicker coordinates (a;,.4, |1 <ly,...,[, <
n). Assume that A, = a; A -+ A a,, where a; = (a;; ... a;,)T with respect to

the basis {e1,...,e,} of V". Then

ayiy 0 A4,
igy = | 0 o0 (5)

(070 R ¢ F



Since A, is nonzero, at least one of its Pliucker coordinates is nonzero. We
assume that a; , # 0, otherwise we simply change the suffixes of the basis

{€1,...,e,} to achieve this. Denote ag = a;_, ay. = Q1 (=i First
we derive the classical p-relations.

The r-extensor A, can be represented by the row vectors of the r x n matrix

T
aj 11 - Q1p
A= =+ | (6)
T
a, 475 N D
Since ag # 0, the matrix
an air
Ao = I (7)
Ary = lypy

is invertible. Multiplying A from the left by Aj', and using

. a
a1i 1 \1/2
-1 . _ .
AO : _Cl_ : ) (8)
0
Gri ay;
we get
av av a
. 1 1(r+1) 1042 i
by ao ag ag
AAta=| | = . : C 9)
T av av
br 1 r(r+1) r(r+2) . axn
Qo Qo Qo

where the b’s are vectors in V™.

Geometrically, the multiplication of A from the left by Aj' induces an invert-
ible linear transformation in the space represented by A,. The row vectors
of matrix Ag'A represents a factorization of A, divided by the determinant
det(Ag') = ag?' of the transformation, i. e.,

Ar:aobl/\---/\b,,. (10)

This formula provides a factorization of A, into the outer product of vectors
represented by its Plicker coordinates.

Now we consider the constraints that the Plicker coordinates of A, satisty.
Apply (5) to A, in its new form (10), we get



biiy -+ b,
Qiy.gp = Qo |+ T, (11)
bril e brir
where b; = (b1 ...b;,)T, and b;; = av /ag. The equality becomes trivial when

(11,...,1.) equals (1,...,r) or differs from it by one element. The number of
nontrivial relations is

C;—l—C:_ICi_,, =Cl —r(n—r)—1. (12)

n

We can further simplify (11) to quadratic one. Expanding the determinant
on the right-hand side of (11) with respect to the last row, we get

) | biy, -0 by, biijy, 0 bu,
aiy..i, = do 21(—1)]+rbrij : : : :
” bor—1yi, 0 be—nyiy be—1)ip 0 be—v)i
.
= ag' Y av. Qiyois ripgseirs

=1 T

where the second step follows from (11). Writing Wiy iy yrijgoin @S iy, WE
J

get
Ao, i, = Y Qv. i (13)
T’Z] 5

Conversely, let A, be an r-vectors whose Pliicker coordinates satisfy (13).
Let b; = (b;y...b;,)T, where b;; = av /ag. The above procedure shows that
ij

under the assumption ag # 0, (11) is equivalent to (13). Therefore (10) holds
and A, is an extensor.

Theorem 2.1. let A, be an r-vectors in V" with Pliicker coordinates (a;, _,
1 <l,....,l, <n). fa; , #0, A, is an extensor if and only if (13) holds
forany 1 < < ... <1, <n, where at least two ¢’s are greater than r.

When expanding the determinant on the right-hand side of (11) with respect
to different rows and columns, we get different quadratic relations. The set
of all these relations is just the p-relations. The number of p-relations is

C;_ZC;I_,,H + Z Shal e 'qu—j’-l—l‘ (14)

n—r-41
=3

Now we define an order among the Pliicker coordinates of A,. Let #(a,..1,)
be the number of elements in [y, ..., [, that are greater than r, then



Loif #(ai, ) < FFaj,. ), set aq, i, < aj, s

2. if #(a;,.5,) = #(aj,.. ;. ), but t1,...4, < j1,...,Jr in lexical order, set

iy iy = Gjy gy

Theorem 2.2. Under the above order, the set
{apa;, 4, = Zax, air | #lay. ) >1, 1<y <...<i <n} (15)
=1

is a Ritt-Wu basis of the p-relations.

Proof. Any relation in (2) is reduced by (15) to a polynomial one in the
variables {ag,av. | 1 <1 < r,r < j < n}. By Theorem 2.1, there is no
ij

constraint among these variables. So any relation in (2) is reduced to 0 =0
by (15). The characteristic set (15) is linear with respect to every of its
leading variables and has only one initial ag, and so is irreducible.

Example 1. When n =5, r = 2, there are 5 Pliucker relations:

F1,234 D Q12034 — Q13024 T A14U23 = 07
Fi o35 0 ai2a3s — ayzags + aysags = 0,
Fio45 1 12045 — Q14025 + a15024 = 07 (16)
Fi 345 0 a13a45 — 14035 + aysaz4 = 0,
F2,345 I 3045 — Q24035 + Q25034 = 0.

When a12 7£ 0, a Ritt-Wu basis 1s F1172347 F17235, F17245. For n >4 and r = 2,

(2) contains C'? relations, while the basis contains C?_, relations.

3 Factorization in Clifford Algebra

Let K = R, A, be an extensor with signature (p', ¢, 0’). Consider the problem
of factoring A, into the outer product of r vectors which are p positive, ¢
negative, and o = r — p — ¢ null ones. We have the following criterion on the
availability of the signature constraints decided by the triplet (p, ¢, 0):

Theorem 3.1. (1) If p' = ¢ =0 (or p' =0 =0, or ¢ = o = 0), then
p=qg=0(orp=0=0,org=0=0). (2)Ifp=0but ¢ #0 (or ¢ =0
but p’ # 0), then p = 0 (or ¢ = 0), and o varies from 0 to o. (3) In other
cases, p, q, o can take any values from 0 to r.

Proof. (1) is obvious. Let eq,..., e, be an orthogonal basis of the subspace
represented by A,. For (2), when p’ = 0 but ¢’ # 0, let the first ¢ vectors



of the basis be negative. Then e; + e; is negative for any ¢ < ¢ < r. For
(3), when p', ¢’ # 0, let the first p’ vectors of the basis be unit positive and
the subsequent ¢’ vectors be unit negative. Then e; + Ae; is positive, null or
negative for 1 <1 < p',p' <j<p +¢,ifand only if [A] <1,=1o0r > 1
respectively. This and (2) guarantee that p,q, o can take any values from 0
to r.

Let A, be the space represented by A,. We can first apply (10) to get
A, = by A+ Ab,, where the b’s are vectors. The inner product matrix of the
bs is M = (b; - bj),,. A special linear transformation 7 in A, changes M
to T'MTT. From linear algebra, we know that there exists a 7' that changes
M to a diagonal matrix whose first p’ diagonal elements are positive and
the subsequent ¢’ diagonal elements are negative. To obtain the required
triplet (p, g, 0), we only need to find a special linear transformation X in A,
that changes 7'M T7 to a matrix which has p positive, ¢ negative and o zero,
diagonal elements. In matrix form, let BT = (b; ... b,), then a factorization
of A, satisfying the signature constraints can be realized by the row vectors

of the matrix XT'B.

The following algorithm realizes the above idea by choosing X according
to the triplets (p, ¢,0) and (p',¢’,0"). When o = 0, an input A, of rational
coefficients leads to an output whose vectors are of rational components. The
algorithm is implemented with Maple 5 Release 3.

Input: A, = by A--- Ab,, where the b’s are vectors in numeric form.
Step 1. Construct the inner product matrix M = (b; - b;),«,.

Step 2. Diagonalize M with the following transformation:
M — TMTT, where det(T) = 1.

T can be chosen to be the composition of some elementary row trans-
formations that replace a row a of a matrix with a + Ab, where X is a
scalar and b is another row of the matrix.

Let D = diag(dy,...,d,) = TMTT.

Step 3. Rearrange the diagonal elements in D such that dy,...,d,y > 0,
dpg1,..oydpyy <0,and dpyygia,...,d. = 0. This can be realized by a
linear transformation 7" of determinant &1, which is the composition of
some elementary row transformations that swap two rows of a matrix.
Denote o' =r —p' — ¢'.

Step 4. The triplet (p',¢’,0') is the signature of A,. Using Theorem 3.1, if
the constraint (p, g, r) is not satisfiable, output this message and exit.



Step 5. There are the following possibilities:

Case 1. If p’ = ¢ =0, output A, = by A--- A b, and exit.
Case 2. If p" #0, ¢ =0 (or ¢ # 0, p' = 0), then p > p', ¢ =0 (or
q>¢',p=0). Define
Ly I,
X =1 Jo-pyxp Ip-p (or Jig-axq Lg-g ),
I, I,
where [}, represents the k X k unit matrix, Ji,_pyxpy (08 Jy_gxqr) is a
matrix whose first column is (1...1)T and other columns are zeros.

Case 3. If p',¢' #0, p' > p, ¢ > q, then o' < 0. Define

Iy
Ty —p J(p’—p)Xq
X = [q )
‘](/q’—q)Xp Ly—

I

where the J’s are matrices whose nonzero elements are the first columns;
the first column of J(,_p)xq 1s

(\/_dp+1/dp’+17 \/_dp-l—2/dp’+17 SRR, _dp’/dp’-l—l)T;

the first column of J(’q,_q)xp is

(\/_dp’+q+1/d17 \/_dp’+q+2/d17 e\ T p’+q’/d1)T'

Case 4. If p',¢' # 0, p' < p, ¢ < q, then o' > 0. Define

Ly
I,
X = [o )
J(p—pryxp! Lppr
Ja—a)xa Ly—g

where the J’s are matrices whose first columns are (1. .. 1)T and other
columns are zeros.

Case 5. If p',q' #0,p" > p, ¢ < q(or p’ <p,q > q), and o' < o, define

I, 1y
[q—q’ J(q—q’)Xq’ [q
7
Io_o J(o—o’)Xq’ (OI’ J(p—p’)Xp’ [p_p,
1y J(’O_O/)Xp/ I, _o



where the J’s are matrices whose nonzero elements are the first columns;
the first column of J,_g1)xyr 1s

([~ dps1 /dya] + 1, [ ~dpsa/dyrir] + 1,y [y =gyt [ dria] + 1)

the first column of J,_pr)yp is

([\/ —dygr1/di] + 1, [\/ —dpgr2/di] +1,..., [\/ —dptq/di] + 1)T§

the first column of J(’O_O/)

xq' 18

(\/_dp-l—q—q’-l—l/dp’-l-lv \/_dp-l—q—q’-l—?/dp’-l—la SRR, _dp’/dp’-l-l)T;

the first column of J(’O_O/)

xp’ 18

(\/_dp+q+1/d17 \/_dp+q+2/d17 e\ T p’+q’/d1)T'

Case 6: If p',¢' #0,p" > p, ¢ < q(or p’ <p, ¢ > q), and o' > o, define

I, Ly
[p’—p J(p’—p)Xq’ ]q
X = 1y (or J(g'=g)xp Iy
I, I,
‘](/o’—o)Xq’ ]0/—0 ‘](/o’—o)Xp’ [0/—0

where the J’s are matrices whose nonzero elements are the first columns;
the first column of Ji,_p)xq is

([\/ —dpt1/dp 1] + 1, [\/ —dpta/dya] +1,..., [\/ —dy [dy 1] + 1)T§

the first column of Jig_g)x,r is

([\/ - p’+q+1/d1] + 1, [\/ - p’+q+2/d1] +1,..., [\/ - p’-l—q’/dl] + 1)T§

the first columns of J{,_,, . and J{,_ ), are (1... HT.

Xq Xp

Output: A, = det(T")a; A ... A a,, where al is the i-th row of the matrix
XT'TB, and BT = (b;...b,).

Example 2. Let {ci, ¢z, e3} be an orthogonal basis of R*!, ¢;-¢; = e3-¢3 =
—63'63:1. Let A2:€1/\€2—|—3€1/\€3—|—€2/\€3.



By the factorization formula (10), we get
Ay = (e1 — e3) A (e2 + 3es);
when (p, q,0) = (3,0,0), using the above algorithm, we get

3 1 1 21
Ay = (e + gez + §€3) A (—3e; — gez + §€3)3
when (p, ¢.0) = (0,3,0), we get
5 23
A2 = (61 - geg - geg) A (62 —|— 363);
when (p, ¢.0) = (0,0,3), we get
1 1 8 10
A2 == (561 — 563) A (gel + 262 + 363).

In geometric applications, an extensor in a Minkowskii space plays an impor-
tant role. For example, in the hyperboloid model of hyperbolic geometry, a
Minkowskii r-extensor represents an (r — 1)-plane; factoring it into an outer
product of negative vectors corresponds to representing the plane with its
points. In the homogeneous model of Euclidean geometry, a Minkowskii r-
extensor represents an (r — 2)-sphere (or plane); factoring it into an outer
product of null vectors corresponds to representing the sphere (or plane) with
its points. An r-extensor can also represent an (r — 1)-bunch of spheres and
hyperplanes; factoring it into an outer product of positive vectors corresponds
to representing the bunch with its spheres and hyperplanes.
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