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Abstract

Cli�ord algebra plays an important role in mathematics and physics,
and has various applications in geometric reasoning, computer vision
and robotics. When applying Cli�ord algebra to geometric problems,
an important technique is parametric representation of geometric en-
tities, such as planes and spheres in Euclidean and spherical spaces,
which occur in the form of homogeneous multivectors. Computing a
parametric representation of a geometric entity is equivalent to fac-
toring a homogeneous multivector into an outer product of vectors.
Such a factorization is called outer product factorization.

When no signature constraint is imposed on the vectors whose
outer product equals the homogeneous multivector, a classical result
can be found in the book of Hodge and Pedoe (1953), where a su�-
cient and necessary condition for the factorability is given and called
quadratic Pl�ucker relations (p-relations). However, the p-relations are
generally algebraically dependent and contain redundancy. In this
paper we construct a Ritt-Wu basis of the p-relations, which serves
as a much simpli�ed criterion on the factorability. When there are
signature constraints on the vectors, we propose an algorithm that
can judge whether the constraints are satis�able, and if so, produce a
required factorization.

1 Introduction

Cli�ord algebra is an important tool in modern mathematics and physics.
Because of its invariant representation for geometric computation, Cli�ord



algebra is gaining wider and wider recognition in �elds like geometric reason-
ing, computer vision and robotics. This short paper contributes to solving
an often encountered problem in applying Cli�ord algebra, the problem of
outer product factorization.

Let K be a �eld whose characteristic 6= 2, and let Vn be a K-vector space of
dimension n. The Grassmann algebra �(Vn) generated by Vn is a graded K-
vector space, whose grades range from 0 to n. The multiplication is denoted
by \^", called the outer product. An element in the Grassmann algebra
is called a multivector, and an r-graded element is called an r-vector. Any
r-vector is called a homogeneous multivector.

Let fe1; e2; : : : ; eng be a basis of Vn. It generates a basis fei1 ^ � � � ^ eir j 1 �
i1 < : : : < ir � ng for the space �r(Vn) of r-vectors. Let Ar be an r-vector,
then

Ar =
X

1�i1<:::<ir�n

ai1:::irei1 ^ � � � ^ eir : (1)

The list (ai1:::ir j 1 � i1 < : : : < ir � n) is called the Pl�ucker coordinates of
Ar. In this paper, we allow any order among the su�xes by requiring that
ai1:::ir be anti-symmetric with respect to its su�xes.

The outer product of r vectors is called an r-extensor. For an r-extensor
Ar = a1 ^ � � � ^ ar, where the a's are vectors, a vector x 2 Vn is in the
subspace Ar spanned by the a's if and only if x ^Ar = 0. Therefore we can
use Ar to represent the space Ar. Since an extensor represents a subspace,
an important question is how to judge whether or not a homogeneous multi-
vector is an extensor, and how to factor an extensor. The factorization will
be unique up to a special linear transformation in the subspace.

In the book of Hodge and Pedoe (1953), there are two theorems that answer
the above question:

Theorem 1.1. An i-vector Ar is an extensor if and only if its Pl�ucker co-
ordinates a = (al1:::lr j 1 � l1; : : : ; lr � n) satisfy the following quadratic
Pl�ucker relations (p-relations): for any 1 � i1 < : : : < ir�1 � n and any
1 � j1 < : : : < jr+1 � n, the following equality holds:

Fi1:::ir�1; j1:::jr+1 (a) :
r+1X
�=1

(�1)�ai1:::ir�1j�aj1:::j��1j�+1:::jr+1 = 0: (2)

Theorem 1.2. Let Ar be an r-extensor with Pl�ucker coordinates (ai1:::ir j
1 � i1; : : : ; ir � n), where al1:::lr 6= 0. Let bj = (blj1; : : : ; bljn)

T , where
bljk = al1:::lj�1klj+1:::lr : Then

Ar = (al1:::lr)
1�rb1 ^ � � � ^ br: (3)



In the book of Iversen (1992), where the Grassmann algebra is replaced by
a nondegenerate Cli�ord algebra, Theorem 1.1 is reformulated elegantly as
follows, where the dot denotes the inner product in the Cli�ord algebra:

Theorem 1.3. An r-vector Ar is an extensor if and only if for any (r � 1)-
vector Xr�1,

Ar ^ (Ar �Xr�1) = 0: (4)

The set of p-relations (2) forms a Gr�obner basis for a convenient monomial
order. Furthermore, it has a structure of Hodge algebra (see DeConcini,
Eisenbud and Procesi, 1982). However, the p-relations are generally alge-
braically dependent, and contain redundancy when used as a criterion on
the factorability of a homogeneous multivector.

In this paper, we construct a Ritt-Wu basis (Wu, 1978), i. e., an irreducible
characteristic set, of (2). The number of relations in the basis is much smaller
than that in (2). The basis not only simpli�es the criterion on the factora-
bility, but also yields an e�cient way to reduce a polynomial of Pl�ucker
coordinates by the Pl�ucker relations.

When Vn is equipped with an inner product, the Cli�ord algebra C(Vn)
generated by Vn (cf. Crumeyrolle, 1990) is linearly isomorphic to �(Vn).
When K = R, a nonzero vector x is said to be positive, or negative, or null,
if x � x > 0, or < 0, or = 0, respectively. The sign of x � x is called the
signature of x. Let Ar = a1 ^ � � � ^ ar, where the a's are mutually orthogonal
vectors and p of which are positive, q of which are negative. The triplet
(p; q; r � p � q) is called the signature of Ar.

The problem of outer product factorization in Cli�ord algebra is, given an
r-extensor, factor it into the outer product of p positive vectors, q negative
ones and r� p� q null ones, if the factorization is possible. An algorithm is
proposed in this paper to solve the problem.

2 Factorization in Grassmann Algebra

LetAr be a nonzero r-vector with Pl�ucker coordinates (al1:::lr j 1 � l1; : : : ; lr �
n). Assume that Ar = a1 ^ � � � ^ ar, where ai = (ai1 : : : ain)T with respect to
the basis fe1; : : : ; eng of Vn. Then

ai1:::ir =

��������

a1i1 � � � a1ir
...

. . .
...

ari1 � � � arir

��������
: (5)



Since Ar is nonzero, at least one of its Pl�ucker coordinates is nonzero. We
assume that a1:::r 6= 0, otherwise we simply change the su�xes of the basis
fe1; : : : ; eng to achieve this. Denote a0 = a1:::r, a_

i j
= a1:::(i�1)j(i+1):::r. First

we derive the classical p-relations.

The r-extensor Ar can be represented by the row vectors of the r�n matrix

A =

0
BB@

aT1
...
aTr

1
CCA =

0
BB@

a11 � � � a1n
...

. . .
...

ar1 � � � arn

1
CCA : (6)

Since a0 6= 0, the matrix

A0 =

0
BB@

a11 � � � a1r
...

. . .
...

ar1 � � � arr

1
CCA (7)

is invertible. Multiplying A from the left by A�1
0 , and using

A�1
0

0
BB@

a1i
...
ari

1
CCA =

1

a0

0
BBB@

a_
1i
...
a_
ri

1
CCCA ; (8)

we get

A�1
0 A =

0
BB@

bT1
...
bTr

1
CCA =

0
BBBBBB@

1
a_
1(r+1)

a0

a_
1(r+2)

a0
� � �

a_
1n

a0
. . .

...
...

. . .
...

1
a_
r(r+1)

a0

a_
r(r+2)

a0
� � �

a_
rn

a0

1
CCCCCCA
; (9)

where the b's are vectors in Vn.

Geometrically, the multiplication of A from the left by A�1
0 induces an invert-

ible linear transformation in the space represented by Ar. The row vectors
of matrix A�1

0 A represents a factorization of Ar divided by the determinant
det(A�1

0 ) = a�10 of the transformation, i. e.,

Ar = a0b1 ^ � � � ^ br: (10)

This formula provides a factorization of Ar into the outer product of vectors
represented by its Pl�ucker coordinates.

Now we consider the constraints that the Pl�ucker coordinates of Ar satisfy.
Apply (5) to Ar in its new form (10), we get



ai1:::ir = a0

��������

b1i1 � � � b1ir
...

. . .
...

bri1 � � � brir

��������
; (11)

where bi = (bi1 : : : bin)T , and bij = a_
i j
=a0. The equality becomes trivial when

(i1; : : : ; ir) equals (1; : : : ; r) or di�ers from it by one element. The number of
nontrivial relations is

Cr
n � 1 � Cr�1

r C1
n�r = Cr

n � r(n� r)� 1: (12)

We can further simplify (11) to quadratic one. Expanding the determinant
on the right-hand side of (11) with respect to the last row, we get

ai1:::ir = a0
rP

j=1
(�1)j+rbrij

��������

b1i1 � � � b1ij�1 b1ij+1 � � � b1ir
...

. . .
...

...
. . .

...
b(r�1)i1 � � � b(r�1)ij�1 b(r�1)ij+1 � � � b(r�1)ir

��������
= a�10

rP
j=1

a_
rij
ai1:::ij�1rij+1:::ir ;

where the second step follows from (11). Writing ai1:::ij�1rij+1:::ir as ai_
j

r, we

get

a0ai1:::ir =
rX

j=1

a_
rij
ai_

j

r: (13)

Conversely, let Ar be an r-vectors whose Pl�ucker coordinates satisfy (13).
Let bi = (bi1 : : : bin)T , where bij = a_

i j
=a0. The above procedure shows that

under the assumption a0 6= 0, (11) is equivalent to (13). Therefore (10) holds
and Ar is an extensor.

Theorem 2.1. letAr be an r-vectors in Vn with Pl�ucker coordinates (al1:::lr j
1 � l1; : : : ; lr � n). If a1:::r 6= 0, Ar is an extensor if and only if (13) holds
for any 1 � i1 < : : : < ir � n, where at least two i's are greater than r.

When expanding the determinant on the right-hand side of (11) with respect
to di�erent rows and columns, we get di�erent quadratic relations. The set
of all these relations is just the p-relations. The number of p-relations is

Cr�2
n C4

n�r+2 +
rX

i=3

Cr�i
n C i�1

n�r+iC
i+1
n�r+1: (14)

Now we de�ne an order among the Pl�ucker coordinates of Ar. Let #(al1:::lr)
be the number of elements in l1; : : : ; lr that are greater than r, then



1. if #(ai1:::ir ) < #(aj1:::jr ), set ai1:::ir � aj1:::jr ;

2. if #(ai1:::ir) = #(aj1:::jr ), but i1; : : : ir � j1; : : : ; jr in lexical order, set
ai1:::ir � aj1:::jr .

Theorem 2.2. Under the above order, the set

fa0ai1:::ir =
rX

j=1

a_
rij
ai_

j

r j #(ai1:::ir ) > 1; 1 � i1 < : : : < ir � ng (15)

is a Ritt-Wu basis of the p-relations.

Proof. Any relation in (2) is reduced by (15) to a polynomial one in the
variables fa0; a_

i j
j 1 � i � r; r < j � ng. By Theorem 2.1, there is no

constraint among these variables. So any relation in (2) is reduced to 0 = 0
by (15). The characteristic set (15) is linear with respect to every of its
leading variables and has only one initial a0, and so is irreducible.

Example 1. When n = 5, r = 2, there are 5 Pl�ucker relations:

F1;234 : a12a34 � a13a24 + a14a23 = 0;
F1;235 : a12a35 � a13a25 + a15a23 = 0;
F1;245 : a12a45 � a14a25 + a15a24 = 0;
F1;345 : a13a45 � a14a35 + a15a34 = 0;
F2;345 : a23a45 � a24a35 + a25a34 = 0:

(16)

When a12 6= 0, a Ritt-Wu basis is F1;234; F1;235; F1;245. For n > 4 and r = 2,
(2) contains C4

n relations, while the basis contains C2
n�2 relations.

3 Factorization in Cli�ord Algebra

LetK = R, Ar be an extensor with signature (p
0; q0; o0). Consider the problem

of factoring Ar into the outer product of r vectors which are p positive, q
negative, and o = r� p� q null ones. We have the following criterion on the
availability of the signature constraints decided by the triplet (p; q; o):

Theorem 3.1. (1) If p0 = q0 = 0 (or p0 = o0 = 0, or q0 = o0 = 0), then
p = q = 0 (or p = o = 0, or q = o = 0). (2) If p0 = 0 but q0 6= 0 (or q0 = 0
but p0 6= 0), then p = 0 (or q = 0), and o varies from 0 to o0. (3) In other
cases, p; q; o can take any values from 0 to r.

Proof. (1) is obvious. Let e1; : : : ; er be an orthogonal basis of the subspace
represented by Ar. For (2), when p0 = 0 but q0 6= 0, let the �rst q0 vectors



of the basis be negative. Then e1 + ei is negative for any q0 < i � r. For
(3), when p0; q0 6= 0, let the �rst p0 vectors of the basis be unit positive and
the subsequent q0 vectors be unit negative. Then ei + �ej is positive, null or
negative for 1 � i � p0, p0 < j � p0 + q0, if and only if j�j < 1, = 1 or > 1
respectively. This and (2) guarantee that p; q; o can take any values from 0
to r.

Let Ar be the space represented by Ar. We can �rst apply (10) to get
Ar = b1^ � � �^ br, where the b's are vectors. The inner product matrix of the
b's is M = (bi � bj)r�r: A special linear transformation T in Ar changes M
to TMT T . From linear algebra, we know that there exists a T that changes
M to a diagonal matrix whose �rst p0 diagonal elements are positive and
the subsequent q0 diagonal elements are negative. To obtain the required
triplet (p; q; o), we only need to �nd a special linear transformation X in Ar

that changes TMT T to a matrix which has p positive, q negative and o zero,
diagonal elements. In matrix form, let BT = (b1 : : : br), then a factorization
of Ar satisfying the signature constraints can be realized by the row vectors
of the matrix XTB.

The following algorithm realizes the above idea by choosing X according
to the triplets (p; q; o) and (p0; q0; o0). When o = 0, an input Ar of rational
coe�cients leads to an output whose vectors are of rational components. The
algorithm is implemented with Maple 5 Release 3.

Input: Ar = b1 ^ � � � ^ br, where the b's are vectors in numeric form.

Step 1. Construct the inner product matrix M = (bi � bj)r�r.

Step 2. Diagonalize M with the following transformation:

M 7! TMT T ; where det(T ) = 1:

T can be chosen to be the composition of some elementary row trans-
formations that replace a row a of a matrix with a+ �b, where � is a
scalar and b is another row of the matrix.

Let D = diag(d1; : : : ; dr) = TMT T .

Step 3. Rearrange the diagonal elements in D such that d1; : : : ; dp0 > 0,
dp0+1; : : : ; dp0+q0 < 0, and dp0+q0+1; : : : ; dr = 0. This can be realized by a
linear transformation T 0 of determinant�1, which is the composition of
some elementary row transformations that swap two rows of a matrix.
Denote o0 = r � p0 � q0.

Step 4. The triplet (p0; q0; o0) is the signature of Ar. Using Theorem 3.1, if
the constraint (p; q; r) is not satis�able, output this message and exit.



Step 5. There are the following possibilities:

Case 1. If p0 = q0 = 0, output Ar = b1 ^ � � � ^ br and exit.

Case 2. If p0 6= 0, q0 = 0 (or q0 6= 0, p0 = 0), then p � p0, q = 0 (or
q � q0, p = 0). De�ne

X =

0
B@

Ip0

J(p�p0)�p0 Ip�p0

Io0

1
CA (or

0
B@

Iq0

J(q�q0)�q0 Iq�q0

Io0

1
CA);

where Ik represents the k � k unit matrix, J(p�p0)�p0 (or J(q�q0)�q0) is a
matrix whose �rst column is (1 : : : 1)T and other columns are zeros.

Case 3. If p0; q0 6= 0, p0 � p, q0 � q, then o0 � o. De�ne

X =

0
BBBBBB@

Ip
Ip0�p J(p0�p)�q

Iq
J 0(q0�q)�p Iq0�q

Io0

1
CCCCCCA
;

where the J 's are matrices whose nonzero elements are the �rst columns;
the �rst column of J(p0�p)�q is

(
q
�dp+1=dp0+1;

q
�dp+2=dp0+1; : : : ;

q
�dp0=dp0+1)

T ;

the �rst column of J 0(q0�q)�p is

(
q
�dp0+q+1=d1;

q
�dp0+q+2=d1; : : : ;

q
�dp0+q0=d1)

T :

Case 4. If p0; q0 6= 0, p0 � p, q0 � q, then o0 � o. De�ne

X =

0
BBBBBB@

Ip0

Iq0

Io
J(p�p0)�p0 Ip�p0

J 0(q�q0)�q0 Iq�q0

1
CCCCCCA
;

where the J 's are matrices whose �rst columns are (1 : : : 1)T and other
columns are zeros.

Case 5. If p0; q0 6= 0, p0 � p, q0 � q (or p0 � p, q0 � q), and o0 � o, de�ne

X =

0
BBBBBB@

Ip
Iq�q0 J(q�q0)�q0

Io�o0 J 0(o�o0)�q0

Iq0

Io0

1
CCCCCCA

(or

0
BBBBBB@

Ip0

Iq
J(p�p0)�p0 Ip�p0

J 0(o�o0)�p0 Io�o0

Io0

1
CCCCCCA
);



where the J 's are matrices whose nonzero elements are the �rst columns;
the �rst column of J(q�q0)�q0 is

([
q
�dp+1=dp0+1] + 1; [

q
�dp+2=dp0+1] + 1; : : : ; [

q
�dp+q�q0=dp0+1] + 1)T ;

the �rst column of J(p�p0)�p0 is

([
q
�dp0+q+1=d1] + 1; [

q
�dp0+q+2=d1] + 1; : : : ; [

q
�dp+q=d1] + 1)T ;

the �rst column of J 0(o�o0)�q0 is

(
q
�dp+q�q0+1=dp0+1;

q
�dp+q�q0+2=dp0+1; : : : ;

q
�dp0=dp0+1)

T ;

the �rst column of J 0(o�o0)�p0 is

(
q
�dp+q+1=d1;

q
�dp+q+2=d1; : : : ;

q
�dp0+q0=d1)

T :

Case 6: If p0; q0 6= 0, p0 � p, q0 � q (or p0 � p, q0 � q), and o0 � o, de�ne

X =

0
BBBBBB@

Ip
Ip0�p J(p0�p)�q0

Iq0

Io
J 0(o0�o)�q0 Io0�o

1
CCCCCCA

(or

0
BBBBBB@

Ip0

Iq
J(q0�q)�p0 Iq0�q

Io
J 0(o0�o)�p0 Io0�o

1
CCCCCCA
);

where the J 's are matrices whose nonzero elements are the �rst columns;
the �rst column of J(p0�p)�q0 is

([
q
�dp+1=dp0+1] + 1; [

q
�dp+2=dp0+1] + 1; : : : ; [

q
�dp0=dp0+1] + 1)T ;

the �rst column of J(q0�q)�p0 is

([
q
�dp0+q+1=d1] + 1; [

q
�dp0+q+2=d1] + 1; : : : ; [

q
�dp0+q0=d1] + 1)T ;

the �rst columns of J 0(o�o0)�q0 and J 0(o�o0)�p0 are (1 : : : 1)
T .

Output: Ar = det(T 0)a1 ^ : : : ^ ar, where aTi is the i-th row of the matrix
XT 0TB, and BT = (b1 : : : br).

Example 2. Let fe1; e2; e3g be an orthogonal basis of R2;1, e1 � e1 = e2 � e2 =
�e3 � e3 = 1. Let A2 = e1 ^ e2 + 3e1 ^ e3 + e2 ^ e3.



By the factorization formula (10), we get

A2 = (e1 � e3) ^ (e2 + 3e3);

when (p; q; o) = (3; 0; 0), using the above algorithm, we get

A2 = (e1 +
3

8
e2 +

1

8
e3) ^ (�3e1 �

1

8
e2 +

21

8
e3);

when (p; q; o) = (0; 3; 0), we get

A2 = (e1 �
5

8
e2 �

23

8
e3) ^ (e2 + 3e3);

when (p; q; o) = (0; 0; 3), we get

A2 = (
1

2
e1 �

1

2
e3) ^ (

8

3
e1 + 2e2 +

10

3
e3):

In geometric applications, an extensor in a Minkowskii space plays an impor-
tant role. For example, in the hyperboloid model of hyperbolic geometry, a
Minkowskii r-extensor represents an (r � 1)-plane; factoring it into an outer
product of negative vectors corresponds to representing the plane with its
points. In the homogeneous model of Euclidean geometry, a Minkowskii r-
extensor represents an (r � 2)-sphere (or plane); factoring it into an outer
product of null vectors corresponds to representing the sphere (or plane) with
its points. An r-extensor can also represent an (r� 1)-bunch of spheres and
hyperplanes; factoring it into an outer product of positive vectors corresponds
to representing the bunch with its spheres and hyperplanes.
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