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Abstract
A novel and simple recursive algorithm for inverting Vandermonde
matrix and its generalized form is presented. The algorithm is suitable
for classroom use in both numerical as well as symbolic computation.

1 Introduction

The importance of the Vandermonde matrix is well known. Inversion of
this matrix is necessary in many areas of applications such as polynomial
interpolation [4, 10], digital signal processing [2], and control theory [6], to
mention a few. See also for example Klinger [8], Kalman [7]. However, an
explicit recursive formula for the inversion of Vandermonde matrices seems
unavailable in most linear algebra textbooks.

The purpose of this paper is to present a novel and simple recursive algorithm
for inverting Vandermonde matrix, as well as its generalized (or confluent)
form, in a way more readily accessible for use in classroom and suitable for
both numerical as well as symbolic computation.

2 Preliminaries and notations

Let m be a nonnegative integer. For the sequence 1, (s — \),..., (s — \)™!
of polynomials we write s(A,m) = [1, (s —A), ..., (s—A)™'|". In particular,

s(0,m) =[1,s,...,s™ ",

Let A1, Ag, ..., A, be given distinct zeros of the polynomial

p(s) = (5= A)™ -+ (5 — A)™



with ny 4+ ...+ n, = n. The generalized (or confluent) Vandermonde matrix
related to the zeros of p(s) is known to be

V=WVl (1)

where the block matrix Vi = V (A, ng) is of order n X ny, having elements
V( Ak, ng)ij = (;:11))\;;] for i > j and zero otherwise (k = 1,2,...,r; i =
1,2,...,n; j = 1,2,...,n;). More specifically, Vj, is the n x n; matrix of
coefficients that appears in the truncated Taylor expansion at A, modulo
(s — Ag)™, of s(0,n). That is,

s(0,n) = V (g, ng)s(Ag, ng) mod (s — Ag)"".

In the case the zeros Ay, ..., A, of p(s) are simple, we have the usual Vander-
monde matrix, namely,

vV — >\‘1 >\‘2 e )‘.r
)\?;—1 )\g;—l L. )\n;—l

It will be shown that the inverse of the generalized Vandermonde matrix V'
in (1) has a form

where each block matrix Wy is of order ny x n, and may be computed by
means of a recursive procedure.

Generally, the inverse of the usual Vandermonde matrix [3], as well as the
inverse of the generalized Vandermonde matrix [9] are based on using inter-
polation polynomials.

Our approach is based on using the Leverrier-Faddeev algorithm [1, 5, 10],
which states that the resolvent of a given n x n matrix A is given by

Bis"' 4+ Bys"? 4 -+ B,
s" +aps" 4 +ay,

(s — A) ' = ; (2)

where det(sI — A) = s" + a;s"~' + -+ + @, is the characteristic polynomial



of the matrix A, and all the B; matrices are of order n x n, satisfying

Bl :[, ay = —%tr(ABl),
B2 == ABl + alf, g = —% tI'(ABQ), (3)
B, =AB,_ 1 +a,_11, ay, = —% tr(AB,,)

with 0 = AB,, + a,I terminating as a check of computation. Here tr stands
for the trace of a matrix.

3 Main result

Let J = diag(.Jy, ..., J;) be the block diagonal matrix, where

(A 10 -+ 0]
0 N 1 :
Je=J Ak, k) = | 0 .00
: A 1

L0 - 0 0 A

is the ny x ng Jordan block with eigenvalue A\;. Then .J has characteristic
polynomial det(sI — .J) = (s — A)™ -+ (s — A)™ = p(s).

Substituting A = J in equations (2) and (3) of the Leverrier-Faddeev algo-
rithm, we see immediately that

p(s)(sI = J)™' = Bys" ' + Bys" ? + -+ + By, (4)
where
Bl = I,
BZ = JBl + Cllj,
Bn = !]Bn—l +an—117
0 = JB,+a,l.

J = diag(J, ..., J;) being block diagonal, so are all the B; matrices. In fact,
Bj :diag(Bj,l,Bj,z,...,Bj,,«), ] = ]_,2,...,TL,

and each block matrix B, is of order nj x ny, satisfying

Bl,k = Ik;
By = JyBijg+ail,
By = JiBpoig+ ap—1ly,

0 = Jan,k + an[ka



where [j is the ng X n identity matrix.
Let us now put

p(s)
= k=1,...,r
pk(s) (S _ )\k)nk’ ) T
Define also the n;-dimensional column vector 6, = [0,---,0, 1], and write

0=1[0F, .- 0T)T.
If we postmultiply both sides of equation (4) by the column vector 6, we
easily get

pl(S)S()\hnl) H,
: =| : |s(0,n). (6)
pr(s)s(Ar, ny) H,
Each H,, is of the form
Hy = [ Byt - By ] (7)
and has order n; X n.
Comparing in turn for £ = 1,2, ..., r the truncated Taylor expansions at A,

modulo (s — \g)™, of both sides in (6) and putting these results together, we
get
H,
diag(Py,....P)=| i [[Vi - V],
H,

where each block Py is a n; X nj upper triangular matrix given by
ng—1 (j)
pe (A

=

(Ng).

It is noted here that Ny = J(0,n;) = Ji, — Axl is nilpotent of order ny.
If we can show that each Py is invertible, then

PlilHl
vVho= : : (8)
P~ H,

To this end we require the following lemma which is an easy consequence of
the partial fraction expansion of 1/p(s) and the fact that Ny is nilpotent.



Lemma 1 Let there be given the partial fraction expansion

1 - Kk Nk Kk np—1 Kk 1 )
= m Skl g DkL)
p(s) kzz:l <(5 — Ap)™ (s = Ag)mt S — Mg

Then for k=1,2,...,r
nE—1 )
Pl =) Kii(Ne) = Ki(Jh),
=0
where the polynomial K(s) is given by

Kk(S) == Kk,nk + Kk,nkfl(s - )\k) + -+ Kk,l(S - )\k)nkfl.

Putting the above results together with equations (7) and (8), we are now
ready to state our main result:

Theorem 1 The inverse of V.= [ViV,...V,] related to the distinct zeros
Ay A 0f P(8) is given by

Wi
varo |
W,
where each block matriz
Wi =W\ mi) = | Ki(J)Busbs Ki(Je)Bu 146 -+ Ki(Je)Buiby |

15 of order ny X n.

Taking into account of (5), we find that ICp(Jx)Bjr = Bjili(Jr),] =
1,2,...,n, so that By Kr(Jx) = Ki(Jx), and for j =2,...,n

B iKi(Je) = JuBj_1:Kk(Jk) + a;—1KCk(Jy)
= ()\kllc + Nk)Bj_l,kICk(Jk) + aj_lle(Jk).

Moreover, (Alx + Ni)Bn i Ki(Jk) + anKi(Ji) = 0.



4 The Algorithm

Based on the results obtained in the last section, we are now ready to give a
recursive algorithm for inverting generalized Vandermonde matrix.

The Algorithm:

Let Aq, Ag, ..., A\, be distinct zeros of the polynomial

pe) = (s Ao (=A™
= 5n+a15n71+...+an

given together with the partial fraction expansion of
L — 2’": Kk’n’“ + Kk’nk_l_ S & ]
p(s) = \(s =)™ (5= Ap)m! s — A

For each k € {1,2,...,r}, compute recursively polynomials hy, hs, . .., h, of
degree at most n, — 1 by means of the following scheme:

hi(s) = Kipy, +5Kgn—1+-+ SnkflKk,h

ha(s) = (Mg + s)hi(s) + arhy(s) mod s™,

h3(s) = (Me+ s)ha(s) + aghq(s) mod s™,

ho(s) = (A +8)hy1(s) + an_1hi(s) mod s™,
terminating at
0= (A + 5)hn(s) + aphi(s) mod s™.
Obtain a block matrix Wy, = W (\g, ng) of order ny x n via the equality
sl ogm=2 L] ] W (A, ng) = [ hy hp_1 -+ hy ]

The inverse of the generalized Vandermonde matrix V' related to the distinct
zeros Ai, Ao, ..., A, of p(s) may then be given by

V= VO m)V (s ne) V(A )]

W()\l, 7’L1)
W()\Q, 7’L2)

W (A, n)



Let us now give some supplementary remarks on the above algorithm.

(i) A check on the accuracy of the computation of polynomials hy, ..., h, is
provided by the last polynomial (\; + s)h,(s) + a,hi(s), which should
result identically in the zero polynomial 0 when modulo s"* is per-

formed.

(ii) The coefficients ay, as, . .., a, of the polynomial p(s) may be recursively
computed using (3) with A =diag( A1,..., A\, oy Ary ooy A )

S— S—
ni Ny

(iii) The partial fraction coefficients Ky, , Ky n,—1, - - -, K1 used in the con-
struction of the starting polynomial h;(s) may be obtained by expand-
ing

1 nk—l

= 3 Kmyi(s — M) + -
) j=0

pk(S

in powers of (s — Ar). They may also be recursively computed using
the following scheme:

Kk,nk — 1/pk,07

ST kK hn—ivi
Kk,nk—j = — i=1 pzk Mk—J (]:1,...,nk—1),
0

5 Illustrative example

The following example will serve to illustrate the recursive algorithm pre-
sented above. Let the generalized Vandermonde matrix V' in (1) be given
by

1 0 0 1 1 0 0 1

podr 0 e f2 1 03
A2 2\ 1 A2 4 -4 1 9|’
AP 3AZ 3M A3 —8 12 —6 27

for which \;y = —2,ny = 3, and Ay = 3,ny, = 1. The coefficients of the
polynomial p(s) = (s + 2)3(s — 3) are given by a; = 3,a3 = —6,a3 = —28,



and ay = —24. Tt is easy to determine the partial fraction expansion of 1/p(s)
to be
1 - %, ",

= - + D5 4 5
(s+2)3(s—=3) (s+2)3 (s+2)?2? s+2 s-—3

Let us consider first the case \; = —2. Clearly

Otf—=

1 s s
M) =—5 =%~ 12
Then
ho(s) = (=2 +8)hi(s) + 3hi(s) mod s*
_ 1 _6s_ 65
5 25 125
hs(s) = (=2 + 8)hy(s) — 6hy(s) mod s°
8,1 1
5 25 1257
hi(s) = (=2 +s)hs(s) — 28hi(s) mod s*

12 n 42s n 117s2
5 25 125 °
As a check of computation, we verify that

;11783 3
(=2 + s)hy(s) — 24hy(s) mod s° = 19% mod s° = 0.
Thus it follows from [ 2 s 1 ]Wl = [ hy hs hy hy ] that
ur 12 6 1
125 125 125 125
m=| %2 8 -4 -a
12 8 _1 _1
5 5 5 5
Similarly, for Ay = 3 we find that
1
) = 1
6
hQ(S) = (3 + S)hl(S) + 3h1(8) mod s = EB,
12
h3(s) = (34 8)ha(s) —6hi(s) mod s = o5’
8

he(s) = (34 s)hs(s) —28hi(s) mod s = o5



and 8 24
(3 + 8)ha(s) — 24ha(s) mod s =3 - — - =0

Then [ 1 |Wyp=[hs hs hy hy | gives

WZ:[L 12 6 L].

1256 125 125 125

Finally, we have

nr 12 6 1

125 125 125 125

42 13 6 1

‘/—1 _ L@G} _ 25 25 25 25

W, 12 8 1 1

5 5 5 5

8 12 6 €

125 125 125 125
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