
Parallel computation of Boolean Gr�obner bases

Y. Sato
y
and A. Suzuki

z

Department of Computer Science

Ritsumeikan University
yysato@theory.cs.ritsumei.ac.jp
zsakira@theory.cs.ritsumei.ac.jp

Abstract

Boolean rings are isomorphic to direct products of a Galois �eldGF (2).

Using these structures, boolean Gr�obner bases can be constructed by

a parallel computation algorithm. We implemented this method using

a parallel logic programming language KLIC. In this paper, we report

on this work.

1 Introduction

In polynomial rings over commutative Von Neumann regular rings, we can

construct Gr�obner bases using special kinds of monomial reductions([W 89]).

This method is implemented as a Gr�obner bases computation algorithm in

\SET CONSTRAINT SOLVER Version 1.0"([Sa 97, Sb 97]).

Meanwhile any commutative Von Neumann regular ring is known to be iso-

morphic to a sub-ring of a direct product of �elds ([SW 75]), and a Gr�obner

basis of its polynomial ring can be characterized in terms of a Gr�obner ba-

sis of a polynomial ring over each �eld. (See Theorem 4.1 for more detailed

description.) With this property, we can also construct a Gr�obner basis of a

polynomial ring over a commutative Von Neumann regular ring by computing

a Gr�obner basis in a polynomial ring over each �eld independently. When

the structures of direct products are simple, this method seems more e�cient,

especially under the environment we can use parallel computations.

Finite boolean rings are among the simplest examples of commutative Von

Neumann regular rings. They are isomorphic to �nite direct products of a

Galois �eld GF (2). Polynomial rings we are handling in [Sa 97] are essentially

polynomial rings over �nite boolean rings. So, the above method is expected

to be more e�cient than the original one.

We implemented this method as a parallel computation algorithm of Gr�obner

bases in \SET CONSTRAINT SOLVER Version 2.0" ([S 99]).

In this paper, we introduce this parallel computation algorithm, and report

on experimental results we got through the actual parallel computations.

In section 2, we give a short description of the theory of Gr�obner bases in

polynomial rings over commutative Von Neumann regular rings with mini-

mum results for understanding our work. The reader is referred to [W 89] or

[S 98] for more detailed comprehensive description.

In section 3, we give a quick review for our set constraint solver based on

Gr�obner bases. In section 4, we describe our parallel computation algorithm.

In section 5, we give several data we got through our experiments.

2 Gr�obner bases

A commutative ring R with identity 1 is called a Von Neumann regular ring

if it has the following property:

8a 2 R 9b 2 R a2b = a:

For such b, a� = ab and a�1 = ab2 are uniquely determined and satisfy

aa� = a, aa�1 = a� and (a�)2 = a�.

Note that every direct product of �elds is Von Neumann regular ring. Con-

versely, any Von Neumann regular ring is known to be isomorphic to a sub-

ring of a direct product of �elds([SW 75]).

We assume R is a Von Neumann regular ring in this section. Note that

any sub-ring of R generated by a �nite subset of R becomes a Noetherean

ring, although R is not generally a Noetherean ring. Therefore there exists a

Gr�obner basis for any �nitely generated ideal in polynomial rings over R. We

can even have an algorithm to construct a Gr�obner basis of the ideal gener-

ated by a given �nite set of polynomials. This algorithm is essentially same

as Buchberger's algorithm except that we have to de�ne special monomial

reductions in our polynomial rings.

In the following unless mentioned, Greek letters �, �, are used for terms,

Roman letters a, b, c for elements of R and f , g, h for polynomials over R.

Throughout this section we work in a polynomial ring over R and assume that

some total admissible order on the set of terms is given. The largest term of

f is denoted by lt(f) and its coe�cient by lc(f). The largest monomial of f

i.e. lc(f)lt(f) is denoted by lm(f), the rest of f i.e. f � lm(f) is denoted by

rm(f).

De�nition 2.1

For a polynomial f = a� + g with lm(f) = a�, a monomial reduction !f is

de�ned as follows:

b�� + h!f b�� + h� ba�1�(a� + g)

where ab 6= 0 and b�� need not be the largest monomial of b�� + h.

A monomial reduction!F by a set F of polynomials is also de�ned naturally.

Using this monomial reduction, we can construct a Gr�obner basis of the ideal

generated by a given �nite set of polynomials. Though the algorithm is al-

most same as the Buchberger's algorithm for polynomial rings over �elds, we

have to take account of the following observation.

In a polynomial ring over a �eld, the equivalence relation
�
$F induced by the

monomial reduction !F for a set F of polynomials coincides with the equiv-

alence relation induced by the ideal (F) generated by F . In our polynomial

ring, however, these two equivalence relations are in general not equal.

De�nition 2.2

A polynomial f is called boolean closed if (lc(f))�f = f . (lc(f))�f is called a

boolean closure of f and denoted by bc(f). Note that the boolean closure of

any polynomial is boolean closed.

Theorem 2.1

Let F be a set of boolean closed polynomials. Then the equivalence relation
�
$F coincides with the equivalence relation induced by the ideal (F).

Since lm(f) = lm(bc(f)), we can construct a set of boolean closed polynomials

H from any given set of polynomials F such that (F) = (H). H is also called

a boolean closure of F . Though such H is not determined uniquely, we abuse

the notation bc(F) to denote one of such H.

Using our monomial reductions, Gr�obner bases are de�ned as follows.

De�nition 2.3

A �nite set G of polynomials is called a Gr�obner basis, if it satis�es the fol-

lowing two properties.

� f
�
$G g i� f � g 2 (G) for each polynomial f and g.

� !G has a Church Rosser property,

i.e. for each polynomial f and g, f
�
$G g i� there exists

a polynomial h such that f
�
!G h and g

�
!G h.

De�nition 2.4

For each pair of polynomials f = a� + f 0 and g = b� + g0, where lm(f) =

a�, lm(g) = b� and GCD(�; �) = 1, the polynomial b�f � a�g =

b�f 0 � a�g0 is called the S-polynomial of f and g and denoted by SP (f; g).

We can also characterize Gr�obner bases in terms of S-polynomials as in poly-

nomial rings over �elds.

Theorem 2.2

Let G be a �nite set of boolean closed polynomials. Then

G is a Gr�obner basis i� SP (f; g)
�
!G 0 for any pair f and g of polynomials

in G.

It is crucial that each polynomial of G is boolean closed. The theorem does

not hold otherwise. This theorem enables us to construct a Gr�obner basis G

for a given �nite set F of polynomials such that (G) = (F).

Algorithm

Let F0 = bc(F).

while there exist f; g 2 Fi such that SP (f; g) #Fi
6= 0

Fi+1 = bc(Fi [fSP (f; g) #Fi
g)

otherwise G = Fi

Reduced Gr�obner bases are de�ned naturally and can be constructed from

any Gr�obner bases immediately. We have the following property.

Theorem 2.3

Let G be a reduced Gr�obner basis; then any element of G is boolean closed.

In polynomial rings over �elds, reduced Gr�obner bases serve us as canonical

forms of Gr�obner bases, however we have to be careful in our polynomial

rings.

De�nition 2.5

A polynomial f is called monic if it satis�es lc(f) = (lc(f))� .

De�nition 2.6

A reduced Gr�obner basis G is called a strati�ed Gr�obner basis, when it satis-

�es the following two properties.

� Ever element of G is monic.

� lt(f) 6= lt(g) for any distinct element f and g of G.

Theorem 2.4

A strati�ed Gr�obner basis is determined uniquely. That is two strati�ed

Gr�obner bases G and G0 such that (G) = (G0) must be identical.

Let us conclude this section with showing that there exist another types of

canonical forms of Gr�obner bases.

De�nition 2.7

A Gr�obner basis G each element of which is monic and boolean closed is

called an optimal Gr�obner basis if it has the following three properties.

(1) G is a minimal Gr�obner basis, i.e. G� ffg is not a

Gr�obner basis of the ideal (G) for any element f of G.

(2) For any element f of G, rm(f) is not reducible by !G.

(3) For each element f and g of G, if lt(f)jlt(g) i.e.

lt(f) divides lt(g),then lc(g)lc(f) = lc(f).

Theorem 2.5

Optimal Gr�obner basis is determined uniquely, that is optimal Gr�obner bases

G and G0 such that (G) = (G0) must be identical.

Note that once we got a reduced Gr�obner basis, it is immediate to construct

a strati�ed and an optimal Gr�obner basis from it.

3 Set constraint solver

Set constraints are a calculus for reasoning about relationships between sets

and elements. Expressions in this calculus are built from set variables, element

variables, the set operations such as union, intersection and complement. Set

constraints consist of containment and equality relationships between these

expressions. Set constraints can be represented in terms of polynomial equa-

tions of certain boolean rings. In order to manage �nite domain constraints

mathematically, we developed a set constraint solver in [Sa 97], where Gr�obner

bases computation methods described in the section 2 is employed for solving

such polynomial equations.

Our solver can handle two types of objects, one is set and another is element.

We can solve constraints consisting of these two types of variables with set

operations such as [(union), \(intersection), ~(complement), and relations

such as �, �, =, 6=, 2, 62.

We describe how the Gr�obner bases computation method is applied for such

set constraints through the following simple example of set constraints.

(For more complicated constraint such as including element variables, we have

to use some delicate technique concerning admissible term orders; however,

the essential part of our solver is also computations of Gr�obner bases.)

Example

fX [Y � fa; bg; a 2 X; b 2 Y; X \ Y = ;g

In this constraint, X and Y are variables for sets which we want to solve. a

and b are constant symbols for elements.

The constraint is translated into polynomial equations of a boolean ring

P FC(A).

f(X�Y +X+Y)�fa; bg=X�Y +X+Y; fag�X=fag; fbg�Y =fbg; X�Y =0g

Where A is a countable set of all constant symbols of elements, P FC(A) is

a boolean ring consisting of all �nite or co-�nite subsets of A. Since every

element of boolean ring is idempotent, the residue ring P FC(A)[X; Y]=(X2+

X; Y 2 + Y) is more suitable for us to work on than the polynomial ring

P FC(A)[X; Y] itself. Gr�obner bases of such residue rings are naturally de�ned

and all results described in section 2 also hold in residue rings. We call

Gr�obner bases of such residue rings boolean Gr�obner bases. In order to solve

the above polynomial equations, we compute the optimal boolean Gr�obner

basis of

f(X �Y +X+Y)�fa; bg+X �Y +X+Y; fag�X+fag; fbg�Y +fbg; X �Y g

and get the following

fX + fag; Y + fbgg:

This is the canonical form of the given constraint.

>From this we can easily see that X = fag and Y = fbg.

The reason we work in P FC(A) instead of P (fa; bg)(a boolean ring consisting

of all subsets of fa; bg) is explained as follows.

If we subtract X [Y � fa; bg from the above constraint, the canonical form

is fX �Y; fa; bg�X+fag; fa; bg�Y +fbgg. Therefore there are many(actually

in�nite) instance of solutions such as X = fa; cg; Y = fb; dg besides X = fag

and Y = fbg. On the other hand, the canonical form does not change as long

as we are working in P (fa; bg).

In the computation of boolean Gr�obner bases, however, we do not use whole

portion of P FC(A). The only portion we need is a boolean sub-ring of P FC(A)

that is generated by only the elements of P FC(A) that appear in the con-

straint. In the above example of constraint, this portion is a boolean ring

generated by fag and fbg. The atomic elements of this boolean ring are fag,

fbg and ~fa; bg, so this portion is isomorphic to the direct product GF (2)3 of

3 Galois �elds GF (2). For a �nite subset S of A, in general, a boolean ring

generated by ffegje 2 Sg is isomorphic to the direct product GF (2)N+1 of

N + 1-many Galois �elds GF (2) where N is the cardinality of S. We denote

this boolean ring by P+(S). This observation will play an important role

in the parallel computation of boolean Gr�obner bases discussed in the next

section.

4 Parallel computation

We �rst describe a key theorem which enables us to have a parallel compu-

tation algorithm for our Gr�obner bases. It is �rst mentioned as Theorem 2.3

of [W 89], although the proof is easy.

Let R be a sub-ring of the direct product
Y
i2S

Ki of �elds Ki, i 2 S.

For a polynomial f over R, fi denotes a polynomial over Ki given from f by

replacing every coe�cient r of f with r(i). For a set F of polynomials over

R, we put Fi = ffijf 2 Fg.

Theorem 4.1

For a set F of polynomials and a set G of boolean closed polynomials of a

polynomial ring R[�X], the following two conditions are equivalent.

� G is a reduced Gr�obner basis of the ideal (F) in R[�X].

� Gi is a reduced Gr�obner basis of the ideal (Fi) in Ki[�X]

for each element i of S.

For a given Von Neumann regular ring R, if we know its structure, that is,

if we know a ring isomorphism � from R to a sub-ring of the direct productQ
i2SKi, and S is a �nite set, we can construct a reduced Gr�obner basis

G by computing Gi for every i 2 S. When the cardinality of S is not so

large and we can use parallel computation environment, this method (which

will be called the new method in what follows) seems more e�cient than the

method based on our monomial reductions described in section 2 (which will

be called the old method in what follows), because the computation of Gi is

independent for each i and the construction of G from Gi i 2 S is immediate.

In case the computation of Ki is much simpler than the computation of R for

every i 2 S, the new method is expected to be e�cient even for sequential

computations.

The boolean ring P+(S) used in our set constraint solver is isomorphic to

the direct product GF (2)N+1 of N + 1-many Galois �elds GF (2), where N

is the cardinality of S a set of constant symbols of elements appearing in a

given set constraint. Since the computation of GF (2) is much simpler than

the computation of P+(S), the new method is expected to be more e�cient

than the old method.

We conclude this section with a simple example of the new method.

Example

Computation of the optimal boolean Gr�obner basis of

(
(~fa; bg) �X � Y + fag �X + Y + fbg

X � Y + fag � Y +X + fa; bg

by the new method is proceeded as follows.

The boolean ring P+(fa; bg) is isomorphic to the direct product GF (2)3. Let

� be a ring isomorphism from P+(fa; bg) to GF (2)3 such that

�(fag) = (1; 0; 0), �(fbg) = (0; 1; 0) and �(~fa; bg) = (0; 0; 1). � is naturally

extended to a ring isomorphism from P+(fa; bg)[X; Y] to GF (2)3[X; Y].

Then �((~fa; bg)�X�Y+fag�X+Y+fbg) = (0; 0; 1)�X�Y+(1; 0; 0)�X+Y+

(0; 1; 0) and �(X�Y +fag�Y +X+fa; bg) = X�Y +(1; 0; 0)�Y +X+(1; 1; 0).

(Since (1; 1; 1) is an identity, we simply write Y instead of (1; 1; 1) � Y for

example.)

In order to get the optimal boolean Gr�obner basis of

F =

(
(0; 0; 1) �X � Y + (1; 0; 0) �X + Y + (0; 1; 0)

X � Y + (1; 0; 0) � Y +X + (1; 1; 0)

we have to compute a reduced boolean Gr�obner basis G of F .

We compute a reduced boolean Gr�obner basis Gi of Fi in a residue ring

GF (2)[X; Y](X2 +X; Y 2 + Y) for each i = 1; 2; 3, and get

G1 = fY + 1, X + 1g, G2 = f1g and G3 = fY +Xg.

>From this we can construct a reduced boolean Gr�obner basis

G =

8>>><
>>>:

(1; 0; 0) � (Y + 1)

(1; 0; 0) � (X + 1)

(0; 1; 0)

(0; 0; 1) � (Y +X):

>From this we can construct the strati�ed boolean Gr�obner basis8><
>:

(1; 0; 1) � Y + (0; 0; 1) �X + (1; 0; 0)

(1; 0; 0) � (X + 1)

(0; 1; 0)

and the optimal boolean Gr�obner basis8><
>:

Y + (0; 0; 1) �X + (1; 0; 0)

(1; 1; 0) �X + (1; 0; 0)

(0; 1; 0):

Converting back to the expression of the boolean ring P+(fa; bg) we �nally

get the desired optimal boolean Gr�obner basis8><
>:

Y + ~fa; bg �X + fag

fa; bg �X + fag

fbg:

5 Experimental results

We implemented the new method as a parallel computation algorithm of

boolean Gr�obner bases in [S 99]. Our program is written in KLIC which is

a parallel logic programming language developed at ICOT(Institute for new

generation computer technology) and released as a free software([KLIC]).

The KLIC compiler enables us to use actual parallel computations through

PVM([PVM]). We had an amount of computation experiments using our

program. The experiments gave us enough evidences that the new method is

more e�cient than the old one as we expected, that is (i) the new method is

much faster than the old one even when the computation is sequential, (ii)

the new method needs less memory than the old one and (iii) we can get

reasonable speed up under the actual parallel computations.

We give three data of Gr�obner bases computations in the following tables.

Data 1(14 variables 10 elements)

s-poly bc time memory process CPU

sequential 4769 0 0:24 7116 1 1

parallely 4769 0 0:05 7452 11 1

old 3848 495 2:08 25576 1 1

Data 2(20 variables 15 elements)

s-poly bc time memory process CPU

sequential 54280 0 10:45 7128 1 1

parallely 54280 0 1:16 6984 16 1

parallel 54280 0 5:10 6988 3 3

parallel 54280 0 3:03 6984 7 7

old 31313 2126 35:16 50216 1 1

Data 3(25 variables 20 elements)

s-poly bc time memory process CPU

sequential 302973 0 698:59 155000 1 1

parallel 302973 0 217:03 99800 7 7

old - - 1 1 1 1

The number of variables is the number of indeterminates of a polynomial

ring, which generally a�ects the size of the Gr�obner basis computation. The

number of elements is the cardinality of constant symbols of elements, which

determines how many independent computations we need. The data are of

three kinds of computations, sequential for sequential computations of the

new method, parallel for parallel computations of the new method and old

for computations of the old method. The computation time is measured by

minutes:seconds. The computation memory is measured by kilobytes. The

process number is the number of processes running through PVM. The CPU

number is the number how many CPU's are actually used. We also give the

number of S-polynomials(s-poly) and boolean closures(bc) created through

the computations. For the computations of the new method, the number

of S-polynomials is the total sum of the numbers of S-polynomials created

through each independent computation. The computation of parallely is a

simulated parallel computation with only one CPU, although many processes

are running through PVM. For this computation, the computation time given

in the table is the maximum of the computation time of all processes. At the

computation of the old method in data 3, the memory was exceeded.

We used 7 computers(PentiumII 400MHZ x 4, PentiumII 333MHZ x 3). Each

of them has 512 Megabytes memory. The operating system is FreeBSD 3.1.

6 Conclusion and remarks

Our implementation is rather naive, we do not use any sophisticated tech-

nique of parallel programming. Nevertheless, our method is su�ciently e�ec-

tive on the actual parallel computations as we have showed in the previous

section. The main reason is that our algorithm is a simple distributive mem-

ory parallel algorithm. In case we use enough number of processes, there are

only two communications between the master process and each slave process.

The �rst is for giving a set Fi of polynomials from the master to each slave,

the second is for giving a reduced Gr�obner basis Gi from each slave back

to the master. Since the construction of G from Gi's is immediate as we

mentioned, the computation time of the Gr�obner basis G is almost same as

the longest computation time of Gi's in case we can use ideal parallel com-

putation. Therefore, when the computation time of one Gr�obner basis Gi

is enormously longer than the rest, we can not expect any speed up by our

parallel computation. This is the worst case. On the other hand, when the

computation time of each Gr�obner basis is almost same, we can expect ideal

speed up. The data of simulated parallel computations with only one CPU

give us almost precise information for such situations. The ratio of the time

of sequential to the time of parallely in the table of previous section is the

possible speed up by the parallel computation. It is 4.8 in the data 1 with

11 processes, 8.5 in the data 2 with 16 processes. In our whole experiment,

the numbers of elements range from 2 to 35 and we got reasonable speed up

in most cases. Because of the shortage of computers we can use, however,

we were not able to try bigger scale of computations. Though we can expect

that the new method is more e�cient than the old one as in the data 3, we

have to have parallel computation experiments to check e�ciency of speed

up for bigger scale of computations.

For the computation of each Gr�obner basis Gi, we can also use a standard

direct parallel computation based on distributed reductions of S-polynomials.

Since this parallel computation is clearly independent of our parallel compu-

tation, we can easily combine them to get more speed up.

References

[KLIC] KLIC Version 3.002.

http://www.icot.or.jp/AITEC/COLUMN/KLIC/klic.html

[PVM] Parallel Virtual Machine http://www.epm.ornl.gov/pvm/

[Sa 97] Sato, Y. (1997). SET CONSTRAINT SOLVER Version 1.0.

http://www.icot.or.jp/AITEC/FGCS/funding/itaku-H8-index-E.html

[Sb 97] Sato, Y. (1997). Set Constraint Solver - Groebner bases for non-

numerical domains -. International Symposium on Symbolic and Alge-

braic Computation(ISSAC 97), Poster Abstracts pp 13-14.

[S 98] Sato, Y. (1998). A new type of canonical Gr�obner bases in polyno-

mial rings over Von Neumann regular rings. International Symposium

on Symbolic and Algebraic Computation(ISSAC 98), Proceedings pp

317-321.

[S 99] Sato, Y. (1999). SET CONSTRAINT SOLVER Version 2.0.

http://www.icot.or.jp/AITEC/FGCS/funding/itaku-H10-index-E.html

[SW 75] Saracino, D. and Weispfenning, V. (1975). On algebraic curves over

commutative regular rings, Model Theory and Algebra, a memorial trib-

ute to A.Robinson, Springer LNM Vol 498, 307{387.

[W 89] Weispfenning, V. (1989). Gr�obner bases in polynomial ideals over

commutative regular rings, EUROCAL '87, J.H. Davenport Ed.,

Springer LNCS Vol 378, 336{347.

