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Introduction
Statistical packages such as MINITAB, SAS and SPSS have been available for many years and

have made an enormous difference to the teaching of Statistics units. Teachers are now able to
regularly include large data sets as part of the teaching and learning process. However, such
packages are not equipped to deal with spatial data, where location as well as value is important.
Such data arise naturally in the earth and environmental sciences. Examples are ore grade of a
mineralisation and concentration of a pollutant. Spatial data usually exhibit some degree of spatial
dependence and hence most of the standard statistical tests do not apply and the standard statistical
software packages have only limited use in the analysis. Over the past thirty years many approaches
have been made to the analysis of spatial data and this branch of mathematics is referred to as
geostatistics. These methods include the modelling of the spatial dependence together with
estimation and simulation algorithms. Modern technology has made possible the application of
geostatistical techniques to real-world problems such as ore reserve estimation and contaminated
sites rehabilitation. It has also stimulated the development of more sophisticated geostatistical
methods.

In this paper we present a selection of these geostatistical methods, together with details of the
software used in their implementation. We illustrate the outcomes by application to a permeability
data set. We consider a sample data set, model the spatial dependence, and perform both estimation
and simulation. We then compare our results with the full data set itself. At Edith Cowan University
we have an active geostatistics research group and we teach geostatistics units at both the
undergraduate and the postgraduate levels. In practice we use the technology detailed here in both
our teaching and our research.

Data Sets
For illustrative purposes we will use the Berea data set which is a real two-dimensional data set

arising from an oil and gas deposit in the United States (see  cite: chujour and  cite: bkc ). These
data comprise 1600 observations derived from air permeability measurements taken on a slab of
Berea sandstone. We shall consider this as reality. As our sample data set we use the b2764 data set
which is one of a number of random samples of 64 points taken by us from the full Berea set.
Students in our introductory geostatistics unit receive the full Berea set, together with an individual
sample set, for use in two of their assignments.

Summary statistics for Berea and b2764, obtained from MINITAB, are given in Figure 1 and
Figure 2 respectively.
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Figure1: Berea Summary Statistics
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Figure 2: b2764 Summary Statistics

While these summary statistics show that both data sets are essentially normally distributed and
give an indication of the key values and values ranges, they do not capture the spatial dimension of
the data. This aspect is illustrated in Figure 3 and Figure 4, which have been obtained from the
3PLOT program of GEOSTAT OFFICE  cite: gstat .

Figure 3: Berea Postplot Figure 4: b2764 Postplot

Note that a table of summary statistics can be obtained from MINITAB and also from 3PLOT.

Variography
A measure of the spatial dependency is given by the experimental semivariogram γh defined

by

γh = 1
2Nh ∑

α=1

Nh

zuα − zuα + h2   #   

where h is the separation vector, zu is the value at location u and Nh is the number of pairs at
separation h. This is usually displayed as a plot of γh against . If γh varies with the direction of h
then the data exhibit anisotropy. If the semivariogram depends only on the separation distance
(referred to as the lag) then the data are isotropic. One way to check for anisotropy is to plot a
variogram surface. This is a contour plot of semivariogram values by direction. The variogram



surface, for five lags with lag spacing 4, in Figure 5 has been generated by VARIOWIN  cite: vario 
and the resulting values illustrated more effectively in Figure 6 via the contouring properties of
3PLOT.

Figure 5: Variogram Surface (VARIOWIN) Figure 6: Variogram Surface (3PLOT)

In this case the variogram surface clearly indicates anisotropy with the major axis of the
anisotropy being in the 135°direction and the minor axis of the anisotropy being in the 45°direction.
In VARIOWIN the angle is measured from East, as per the convention in mathematics. However, in
most of the geostatistics software the angle is a bearing from North which reflects the practice in
geology. The VARIOWIN package can then be used interactively to fit a variogram model based on
an optimal fit in the two most important directions. The experimental semivariograms in these
directions, together with our chosen variogram model is displayed in Figure 7. The experimental
semivariograms were calculated for six lags with lag spacing 4. The model fitted is a linear
combination of a nugget effect model with nugget parameter 2 and two exponential models with
parameters detailed in Table 1.



Figure 7: Experimental Semivariograms and Variogram Model

 [B]  caption 
Direction Partial Sill Range Anisotropy Factor

135° 110 9.25 1

45° 150 9.25 1000

 [E] 

It must be noted that VARIOWIN is a relatively simple package and can handle only
two-dimensional data sets. For three-dimensional data sets we use VISOR  cite: visor which is a
much more powerful and sophisticated variography package. In addition, for some research projects
with very large data sets, we use the GEMCOM mining software suite.

Estimation
The estimation method illustrated here is known as Ordinary Kriging (see  cite: goov ). This

algorithm preserves the sample values at data locations and assigns a value at an unsampled location
as a weighted average of sample data points. The sample values chosen, and the corresponding
weights used in the estimation, vary from point to point and are determined by the spatial continuity
as expressed in the variogram model used. To carry out Ordinary Kriging, usually referred to as OK,
we use the GSLIB2 software library  cite: gslib . This consists of Fortran subroutines and associated
parameter files, which can be compiled and used as written for most teaching situations, but which
can be customised to a particular research problem. In Figure 8 and Figure 9 we show the results
from OK estimation using the routine KT3D, together with the estimation variance map. The
smoothing properties of the interpolation can be seen in Figure 8 and that OK is an exact interpolator
can be seen from Figure 9 by the zero variances at the sample data locations.



Figure 8: Estimates using OK Figure 9: Variances from OK

Simulation
One problem with estimation techniques such as OK is that they exhibit conditional bias. This

means that they tend to overestimate the lower values and underestimate the higher values. The
result of OK is a smooth set, with a lower variance than the actual data set. There are situations
where this conditional bias can lead to real difficulties. One example is the case of a contaminated
site where the extremes of pollutant concentration can be vital.

Geostatistical simulation methods are used when one wishes to capture the variablity of the
actual data set. There are many different algorithms in current use but we have chosen here the
method of Sequential Gaussian Simulation (see  cite: goov ), referred to as SGSIM. Like Ordinary
Kriging, the method SGSIM also preserves the values at the sample locations. Again we use GSLIB2
to carry out the simulations. Each implementation of the algorithm gives one realisation of reality.
Four such realisations are shown in Figures 10 -13.

Figure 10: Simulation using SGSIM Figure 11: Simulation using SGSIM



Figure 12: Simulation using SGSIM Figure 13: Simulation using SGSIM

In practice a large number of such realisations are carried out and common features observed.
Alternatively, an average can be found from these realisations. Figure 14 shows an averaging of 10
realisations for the Berea data set. In this case we obtain the same sort of smoothing that we
observed in the estimation case. A better use of a number of realisations is to obtain a (spatial) map
of the probability of exceeding a given cut-off value or the mean value above a given cut-off value.
Figure 15 shows the probability of exceeding the cut-off value of 63.

Figure 14: Average of 10 Simulations Figure 15: Probability from10 Simulations

Conclusion
From their beginnings in the mining and petroleum industries, geostatistical techniques are now

expanding rapidly and are being applied in many other areas, including soil science and
environmental science. We have indicated here, in a small way, some of the features of typical
geostatistical estimation and simulation techniques and the software used to implement these. These
algorithms were simply not realistically applicable to large data sets without the advent of modern
computing technology.
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