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Abstract

The purpose of this paper is to show how the powerful computer algebra system 
Maple V Release 5 can be used to explore and visualize with animation a selection 
of engineering mathematical topics in calculus, differential equations and linear 
algebra. Animated examples which will be discussed and shown are:
• Taylor polynomial in two variables, simple pendulum with numerical solution, a 

system of two and three spring-coupled masses, reflection and transmission of a 
transverse pulse at the boundary of two ropes of different linear density, the 
convolution product of a rectangular window with an exponential function and 
trajectory of the dynamical system described by the difference equation 
X(k+1) = A X(k), 

Introduction

At Telemark College, Department of Technology in Porsgrunn, Norway, we have 
during the last four years incorporated the computer algebra system Maple V as an 
integrated part of the learning process througout all the subjects in the engineering 
mathematics curriculum. Maple's capability of both symbolic and numerical 
computation and graphical visualization permit us to develop greater conceptual 
understanding of the process under study not evident before the advent of a CAS tool 
like Maple. An important part of the design of a process is the modeling and 
simulation. The Maple system enables us to develop both simple and complex 
mathematical models in classrooms and labs, run them, analyze their output, modify 
them and rerun them easily. This makes mathematics more relevant and motivating 
for engineering students and provides valuable insight into the underlying dynamics, 
which helps the learner of mathematics to gain a better feel for what is going on than 
has hitherto been possible. The purpose of this article is to demonstrate how Maple 
can be used to investigate and visualize with animations a selection of examples 
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from our engineering mathematics curriculum [1, 2, 3], Taylor polynomials for 
( )f ,x y , the motion of a simple pendulum, a system of two or three spring-coupled 

masses, reflection and transmission of a wave pulse at a boundary, graphical 
interpretation of some convolutions and graphical visualizing of the solutions of a 
discrete dynamical system described by a difference equation. 

Taylor Polynomial in 
 two variables

If we know the value of ( )f ,x y  and its partial derivatives at a point , = x a  = y b, then 
the Taylor polynomial in two variables allow us to estimate ( )f ,x y  at points near to (
,a b). We define the Taylor polynomial of degree n generated by f at  , = x a  = y b as a 

function in the same way as the polynomial in one variabel by:
> restart:
> readlib(mtaylor):
> P:=(f,a,b,n,u,v)->subs(x=u,y=v,mtaylor(f,[x = a,y=b],n+1)):
The Taylor polynomial of degree 2 at ( ,a b) is:
> 'P(f(x,y),a,b,2,x,y)'=P(f(x,y),a,b,2,x,y);

( )P , , , , ,( )f ,x y a b 2 x y ( )f ,a b ( )( )D1 f ,a b ( ) − x a ( )( )D2 f ,a b ( ) − y b +  +  = 
1

2
( )( )D ,1 1 f ,a b ( ) − x a 2 ( ) − x a ( )( )D ,1 2 f ,a b ( ) − y b +  + 

1

2
( )( )D ,2 2 f ,a b ( ) − y b 2 + 

With  = ( )f ,x y  +  + 2 ( )cos x ( )sin y  , (a,b) =(0, 2) and  = n 2 we get the following 
approximating to ( )f ,x y  at the point ( ,3 3).
> f:=(x,y)->2+cos(x)+sin(y):
> 'P'(f(x,y),0,2,2,x,y)=P(f(x,y),0,2,2,x,y);

( )P , , , , , +  + 2 ( )cos x ( )sin y 0 2 2 x y  = 

 +  +  −  − 3 ( )sin 2 ( )cos 2 ( ) − y 2
1

2
x2 1

2
( )sin 2 ( ) − y 2 2

> 'P'(f(3,3),0,2,2,1,-1)=evalf(P(f(x,y),0,2,2,1,-1));
 = ( )P , , , , , +  + 2 ( )cos 3 ( )sin 3 0 2 2 1 -1 .565899516

> f(3,3)=evalf(f(1,-1));
 =  +  + 2 ( )cos 3 ( )sin 3 1.698831321

> 'P'(f(3,3),0,2,12,1,-1)=evalf(P(f(x,y),0,2,12,1,-1));
 = ( )P , , , , , +  + 2 ( )cos 3 ( )sin 3 0 2 12 1 -1 1.698777264

With  = n 12 the values of the Taylor polynomial and the funtion are in close 
agreement, which is visualized in 
Figure 1.
> f:=(x,y)->2+cos(x)+sin(y):
• Taylor3D(f, a, b, n) animates a Taylor polynomial of dgreee n  generetated by f(x,

y) at x =a, y = b. 
> Taylor3D(f,0,2,12,x=-2..2,y=-4..4,z=0..4,axes=frame,orientation=[-19,86]);
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Figure 1 Animation of Taylor polynomials generated by  
 = ( )f ,x y  +  + 2 ( )cos x ( )sin y  at (0, 2)

Simple Pendulum

The objective in this section is to visualize the motion of a simple pendulum which 
consist of a small mass m suspended by a light inextensible cord of length L from a 
fixed support. If we apply the law of the conservation of mechanical energy to 
analyze the motion of the mass m, we obtain the following initial value problem 
described by the differential equation

∂

∂2

t2
( )θ t  + 

g

L
  = ( )sin θ 0

subject to the initial conditions  = ( )θ 0 θ0 and  = 










∂

∂

t
( )θ t

 = t 0
v0. g is the acceleration 

of gravity and the angular displacement ( )θ t  is measured from the vertical. If we 
account for the frictional resistance of the surrounding medium which is proportional 

to the instantaneous velocity,  c 
∂

∂

t
( )θ t , the result is the differential equation:

∂

∂2

t2
( )θ t  + c 

∂

∂

t
( )θ t  + 

g

L
  = ( )sin θ 0

This equation has no closed-form solution for ( )θ t , so we find a numerical solution 
using the Runge-Kutta-Fehlberg fourth-fifth  method. We define the general 
nonlinear pendulum eqation by:
> deq:=(c,L)->diff(theta(t),t$2)+c*diff(theta(t),t)+9.8/L*sin(theta(t))=0: 

With the damping coefficient  = c .2 s( )−1 ,  = L 5 m and the initial conditions  = ( )θ 0
π

3
,   = ( )( )D θ 0 0 we get:
> sol:=dsolve({deq(0.2,5),theta(0)=Pi/3,D(theta)(0) = 

0},theta(t),numeric,startinit=true):

The graphs of ( )θ t  and 
∂

∂

t
( )θ t  is shown in Figure 2. 

> with(plots):
> plt1:=odeplot(sol,[t,theta(t)],0..10): 

plt2:=odeplot(sol,[t,diff(theta(t),t)],0..10,color=blue):
> display(plt1,plt2);

Figure 2 Angular and angular velocity position for the simple pendulum with 
damping 
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The pseudoperiod T1 of time for the first complete damped oscillation is about four 
times the amount of time required for θ to decrase from  = θ θ0 to  = θ 0.
> alpha:=u->subs(sol(u),theta(t)):
> T[1]=4*fsolve('alpha(u)'=0,u=0..2);

 = T1 5.057414828
Figure 3 animates damped motion of the pendulum and the simultaneous position of 
the mass on the angular position curve. 
• Pendulum(L, θ0, c) create an animation of the motion of a simple pendulum. The 

angular posistion θ is controlled by the numerical solution of the differential 
equation describing the pendulums motion. The initial angular velocity is assumed 
zero. L: length of the pendulum; θ0: initial angular position in degrees; c: 
damping coefficient.

> Pendulum(5,60,0.2,scaling=constrained,axes=normal,tickmarks=[4,4]);

 =  +  + 










∂

∂2

t2
( )θ t .2









∂
∂
t

( )θ t 1.960000000 ( )sin ( )θ t 0

Pseudoperiod
 = T 5.057414828

Figure 3 Damped motion of a simple pendulum

Spring-Coupled Masses

The purpose of this section is to describe and animate the motion of two or three 
masses connected to attached springs. Figure 4 shows three masses, ,m1 m2 and m3 
connected to each other and to two walls by four springs with spring constants 

, ,k1 k2 k3 and k4.

Figure 4 Three spring-couplet masses

Since friction is to be neglected, the only forces acting on the masses are those due to 
the extension and compression of the attached springs. We take the rightward 
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displacements ,x1 x2 and x3 of the respective masses from their equilibrium posistions 
as coordinates. The first spring is then stretched the distance x1, the second spring is 
stretched the distance  − x2 x1, the third spring is stretched the distance  − x3 x2 and the 
fourth spring is stretched the distance x3. If we assume that each spring obeys 
Hooke's law, Newtons law gives us the following set of differential equations: 

m1  = 
∂

∂2

t2
( )x1 t −k1 ( )x1 t  + k2 ( ) − ( )x2 t ( )x1 t

m2  = 
∂

∂2

t2
( )x2 t −k2 ( ) − ( )x2 t ( )x1 t  + k3 ( ) − ( )x3 t ( )x2 t

m3  = 
∂

∂2

t2
( )x3 t −k3 ( ) − ( )x3 t ( )x2 t  - k4 ( )x3 t

In matrix form, this system can be written:
M x''(t) = K x(t)

where the M is the mass matrix and K  the stiffness matrix. Then it follows 
x''(t) = A x(t)

where A = M ( )−1 K. 

If the 3 x 3 matrix A has distinct negative eigenvalues , ,−ω1

2
−ω2

2
−ω3

2
 with 

associated real eigenvectors V1, V2 and V3, then the solution of  x''(t) = A x(t) is 
given by

x(t) = ∑
 = i 1

3

( ) + ai ( )cos ωi t bi ( )sin ωi t Vi

• SpringMassCouplet(L, init) solves the second order system described above, 
displays the matrix 

  A = M ( )−1 KA, the eigenvalues and the corresponding circular frequencies. The 
motion of the spring-couplet masses can be animated in four different cases:  
1) Three masses and four springs: L = [[ ],m1 k1 ,[ ],m2 k2 ,[ ],m3 k3 , k4] 
2) Three masses and three springs, no spring connected to the right-hand wall: L = 
[[ ],m1 k1 ,[ ],m2 k2 ,[ ],m3 k3 ] 
3) Two masses and three springs: L = [[ ],m1 k1 ,[ ],m2 k2 , k3] 
4) Two masses and two springs, no spring connected to the right-hand wall: L = [
[ ],m1 k1 ,[ ],m2 k2 ] 
The initial conditions is defined by init = [

, , , , ,( )x1 0 ( )x2 0 ( )x3 0 ( )( )D x1 0 ( )( )D x2 0 ( )( )D x3 0 ] 
Three masses and four springs
> L:=[[1,1],[1,2],[1,2],3]:init:=[-1.5,1,0,0,0,0]:
> SpringMassCouplet(L,init,10,scaling=unconstrained,axes=frame);

 =  +  − 










∂

∂2

t2
( )x1 t 3 ( )x1 t 2 ( )x2 t 0,

 =  +  −  − 












∂

∂2

t2
( )x2 t 4 ( )x2 t 2 ( )x1 t 2 ( )x3 t 0,

Page 5



 =  +  − 










∂

∂2

t2
( )x3 t 5 ( )x3 t 2 ( )x2 t 0

coefficient matrix

 = 

































1

m1

0 0

0
1

m2

0

0 0
1

m3



















−  − k1 k2 k2 0
k2 −  − k2 k3 k3

0 k3 −  − k3 k4

















-3 2 0
2 -4 2
0 2 -5

eigenvalues

 = [ ], ,−ω1

2
−ω2

2
−ω3

2
[ ], ,-4. -7. -1.

natural frequencies
 = [ ], ,ω1 ω2 ω3 [ ], ,2.000000000 2.645751311 1.000000000

( )x1 t .8888888889 ( )cos 2. t .3888888889 ( )cos 2.645751311 t−  −  = 
.2222222222 ( )cos t − ( )x2 t .4444444444 ( )cos 2. t = ,
.7777777778 ( )cos 2.645751311 t .2222222222 ( )cos t +  − ( )x3 t  = ,

.8888888889 ( )cos 2. t .7777777778 ( )cos 2.645751311 t − 
.1111111111 ( )cos t − 

Figure 5 Three spring-couplet masses. 
 The vertical lines marks the equilibrium positions of the masses.  

m1= m2 = m3 = 1 kg,  = k1 1
N

m
,  = k2 k3 = 2

N

m
 and  = k4 3

N

m
.

Figure 5 shows that the natural frequencies of the system is 
 = [ ], ,ω1 ω2 ω3 [ ], ,2.000000000 2.645751311 1.000000000 .In the first natural mode 

the two masses m1 and m3 move in opposite directions with equal amplitudes. The 
mass m2 move in the same direction but with the amplitude of motion half  that of  
m3. In the second mode  m1 and m3 move in the same directions, opposite to m2,  
with the amplitude m3 twice that of m1 and equal to that of m2. In the last mode with 
frequency  ω3 all three masses move in the same direction. m1 and m2 have equal 
amplitudes twice that of m3.

Reflection/Transmission  
of Wave Pulses 

Here we want to visualize the reflection and the transmission of a transverse wave 
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pulse at the boundary of two ropes of different linear densities. 

Figure 6 Two ropes of different linear densities µ1 and µ2

Suppose that the two ropes in Figure 6, having masses per unit length of µ1 and µ2 lie 
along the x-axes in their equilibrium position and are joined at the origin,  = x 0.  It is 
easy to show that the equation  = y ( )f  − x c1 t  describes a pulse with function f 
traveling to the right with speed c1.    = y ( )f  + x c2 t  describes a pulse traveling to the 
left with speed c2. Let us suppose that some point of a stretched rope is forced to 
oscillate transversely with simple harmonic motion such that a continuous 
succession of pulses, or a continous wave train, travels along the rope.  Any 
transmitted or reflected wave must have the same frequency ν as the incident wave at 
the boundary of the two ropes. For the incident, reflected and transmitted wave the 
displacement at any time is given by respectively

 = yi Ai sin 2 π ν








 − t

x

c1

 ,  = yr Ar sin 2 π ν








 + t

x

c1

 ,  = yt At sin 2 π ν








 − t

x

c2

where ,Ai Ar and At are the amplitudes of the incident, reflected and transmitted 
waves respectively. At the boundary,  = x 0, the vertical displacement of the two 
ropes must be the same at every instant of time, or   =  + yi yr yt.  This gives that  

 =  + Ai Ar At.  At the boundary,  = x 0, the vertical forces on the ropes must be the 
same. If the tension F in the two ropes is the same it follows that

 = F








 + 











∂

∂

x
yi











∂

∂

x
yr

 = x 0

F










∂

∂

x
yt

 = x 0

 and subsequently    =  − 
Ai

c1

Ar

c1

At

c2

,   

 = 
 − Ai Ar

 + Ai Ar

c1

c2

If we define the coefficient of reflection R as the ratio of the amplitude of the 

reflected wave to the incident wave, then  = R
Ar

Ai

 = 
 − c2 c1

 + c2 c1

  .  The velocities in the 

two ropes are  = c1

F

µ1

 and  = c2

F

µ2

  .From this it follows that  

 = R
 − µ1 µ2

 + µ1 µ2

• WavePulse( ,µ1 µ2) animates reflection and transmission of a transverse pulse at 
the boundary of two ropes of different linear density µ1 and µ2

Let us illustrate what happens to a wave pulse if :
a) The mass per unit length µ1 of rope 1 is smaller than µ2 of rope 2.
> plt1:=WavePulse(1,4,axes=none,scaling=unconstrained,title=`a`):
Figure 7 a) shows that the amplitude of the reflected pulse Ar is opposite to that of 
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the incident wave because of the negative value of the coefficient of reflection, R,  
according to the equation above.

b) If we let 
µ1

µ2

 -> 0 then  R->-1 and Ar ~ -Ai and At ~ 0 as illustrated in Figure 7 b) 

where µ1 << µ2.
> plt2:=WavePulse(1,10^8,axes=none,scaling=unconstrained,title=`b`):

c) The mass per unit length µ1 of rope 1 is greater than µ2 of rope 2.
> plt3:=WavePulse(4,1,axes=none,scaling=unconstrained,title=`c`): 

display(array([plt1,plt2,plt3]));

When  < µ2 µ1  R is positive. There will be no change in phase at reflection, Ar has the 
same sign as Ai, as  
Figure 7 c) shows.

Figure 7
The red rope has the density µ1, the blue rope the density µ2,  a)  Wave pulse 

advancing along two ropes of  different linear densities,  = µ1 1,  = µ2 4, b) Wave 

pulse reflected at the boundary of two ropes, linear densities,  = µ1 1,  = µ2 108, c) 
Wave pulse advancing along two ropes,  = µ1 4,  = µ2 1

Convolution

Ther convolution of ( )f t  and ( )g t , denoted by f*g(t), is given by 

f*g(t) = d
⌠
⌡


0

t

( )f τ ( )g  − t τ τ

Convolution is a useful concept and can be found in various places in applied 
mathematics since it plays an important role in for instance heat conduction, wave 
motion and time series analysis. Here we intend to give an interpretation of f*g by 
animation of the convolution product of  a rectangular window  = ( )f t  − ( )u t ( )u  − t 1  

with an exponential function  = ( )g t e( )−t .
> restart: alias(u=Heaviside):
Let us define the convolution product h = f*g  by the integral
> h:=t->Int(f(tau)*g(t-tau),tau=0..t):
> 'h(t)'=h(t);

 = ( )h t d
⌠
⌡


0

t

( )f τ ( )g  − t τ τ

The convolution of   = ( )f t  − ( )u t ( )u  − t 1  and   = ( )g t e( )−t , where ( )u t  is the 
Heaviside unit step function, is given by ( )h t .
> f:=t->u(t)-u(t-1):g:=t->exp(-t):
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> 'h(t)'=h(t);

 = ( )h t d
⌠
⌡


0

t

( ) − ( )u τ ( )u  − τ 1 e( )−  + t τ τ

The graph of this convolution product is shown in Figure 8
> plot(value(h(t)),t=0..8,labels=[`t`, `h(t)`],color=blue);

Figure 8 The convolution product   = ( )h t d
⌠
⌡


0

t

( )f τ ( )g  − t τ τ , 

 = ( )f t  − ( )u t ( )u  − t 1 ,   = ( )g t e( )−t

• Convolution(f, g) animates the convolution product f*g
Figure 9 shows the animation of the convolution product of the rectangular window 
( )f t  and the exponential function  ( )g t . The counter displays the value of the 

overlapping area between the green exponential area and the red windows as the red 
window move from left to right towards the stationary green area. The green disk 

moves on the blue convolution curve  = ( )h t d
⌠
⌡


0

t

( )f τ ( )g  − t τ τ  and indicate 

graphically the value of  ( )h t .
> Convolution(f,g);

 = d
⌠
⌡


0

t

( )f τ ( )g  − t τ τ  −  −  + ( )u t e( )−t ( )u t ( )u  − t 1 ( )u  − t 1 e( ) − 1 t

Figure 9 Animation of the convolution product f*g.

 = ( )f t  − ( )u t ( )u  − t 1 ,   = ( )g t e( )−t

The convolution product reach a maximum equal to  = d
⌠
⌡


0

1

e( )−t t .6321205588 when 

the right hand side of the red rectangle is at  = t 1, and the green disk is at the top of 
the convolution curve ( )h t .

Discret Dynamical System
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A discret dynamical system is a sequence of numbers that are defined recursively. 
Eigenvalues and eigenvectors provide the key to understanding the evolution of a 
dynamical system described by a difference equation X(k+1) = A X(k) where A is a 
square matrix. We can view this equation as a description of what happens to an 
initial point X(0) in the plane as it is transformed repeatedly by the mapping X->A X 
. The long-term behaviour of the dynamical system  is equivalent of the steady-state 
response in an engineering control system.  An instructive way to see how 
multiplication by the matrix A affects points is to plot an arbitrary point  X(0) and 
then to plot successive images of this point under repeated multiplications by A.
• PointIteration(A, X0, N) animates trajectories of the system X(k+1) = A X(k). X0 

is the initial point X(0).
Rotation

Let  = A








.5 −.6
.75 1.1

.

> A:=matrix(2,2,[0.8,0.5,-0.1,1.0]): LX0:=[[0,2.5],[4,0],[0,-2.5]]:
Figure 12 animates three points under the action of the matrix A with complex 
eigenvalues
> PointIteration(A,LX0,45,line,view=[-5..5,-3..3]);

 = A








.8 .5
-.1 1.0

Eigenvalues
 = [ ],λ1 λ2 [ ], + .9000000000 .2000000000 I  − .9000000000 .2000000000 I

Figure 12 Iteration of  the points [0,2.5],[4,0],[0,-2.5] under the action of  

 = A








.8 .5
−.1 1.0

.
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