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Abstract

Quantum-mechanical di�raction and interference patterns associ-

ated with one-dimensional motion of a non-relativistic particle are

obtained by using Maple. The normalized probability density for the

particle's position after passage of the wave function through one or

more sharp-edged slits involves combinations of Fresnel cosine and sine

integrals and can readily be plotted. The Aharonov-Bohm phase shift

caused by a magnetic ux string located between two slits is also con-

sidered. The periodicity of the Aharonov-Bohm e�ect is illustrated

in a Maple animation in which the interference pattern varies with

the value of the con�ned magnetic ux. The classical limit is demon-

strated in a separate animation in which Planck's constant is made to

approach zero and it is shown that the Aharonov-Bohm e�ect vanishes

in this limit.

1 Introduction

The use of Fresnel cosine and sine integrals has long been established in
the classical theory of the di�raction and interference of light due to rect-
angular apertures and slits [1]. These integrals also occur in the solution of
quantum-mechanical di�raction and interference problems involving sharp-
edged slits. In their classic text on path integrals in quantum mechanics,
Feynman and Hibbs [2] have discussed the di�raction of the wave function
of a non-relativistic particle, moving in one dimension, by a single slit. They
showed that in the case of a Gaussian slit, the di�racted wave function is a
spreading Gaussian wave packet that can easily be plotted. The di�racted
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wave function for the more realistic sharp-edged slit, on the other hand, was
shown to be expressible in terms of Fresnel integrals and tables of numeri-
cal values were used to plot the di�raction pattern. Kobe [3] has extended
Feynman and Hibbs's treatment of a Gaussian slit to two such slits and has
calculated the e�ect of the Aharonov-Bohm phase shift on the interference
pattern when there is a magnetic ux string located between the two slits.

Modern computer algebra systems have made the evaluation, graphing and
animation of many special mathematical functions almost routine operations.
In this paper, Maple [4] will be used to plot di�raction and interference pat-
terns that are associated with sharp-edged slits and hence involve combina-
tions of Fresnel cosine and sine integrals. The Aharonov-Bohm e�ect will
also be included. To illustrate how Maple can evaluate the Fresnel integral
functions, the graphical representation of these functions known as the spiral
of Cornu is reproduced in Section 2. Di�raction patterns due to a single
slit and di�raction and interference patterns due to two slits are obtained in
Sections 3 and 4, respectively. In the two-slit case, Maple code to generate
an animation that exhibits the periodicity of the Aharonov-Bohm e�ect will
be given. Finally, in Section 5, the classical limit is simulated in a Maple
animation by allowing Planck's constant to approach zero.

2 Fresnel Integral Functions

The Fresnel cosine and sine integral functions are de�ned by

C(s) =
Z

s

0

cos
�
1

2
�v2

�
dv and S(s) =

Z
s

0

sin
�
1

2
�v2

�
dv: (1)

It follows directly from the de�nitions that both C and S are odd functions.
Also C(s) ! 1

2
and S(s) ! 1

2
as s ! 1, as may be shown by contour

integration [1]. The spiral of Cornu is the curve represented by the parametric
equation

r(s) = C(s)i+ S(s)j; �1 < s <1: (2)

Since r(0) = 0 and dC2+dS2 = ds2, the parameter s is the signed arc length
measured from the origin along the curve. Execution of the following Maple
commands gives the portion of the spiral of Cornu shown in Figure 1.

> alias(C=FresnelC,S=FresnelS):
> plot([C(s),S(s),s=-4..4],scaling=constrained,labels=[C,S],
> labelfont=[HELVETICA,BOLD,14],numpoints=600);

The graph has traditionally been used as the basis of a method for estimat-
ing the values of C(s) and S(s) and is also useful [1] for deriving general
properties of Fresnel di�raction patterns.
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Figure 1: Spiral of Cornu

3 One-Slit Di�raction

Consider an idealized experiment in which a particle of mass m is emitted
from the origin O of a rectangular Cartesian coordinate system Oxyz when
the time t is zero (see Figure 2). The motion parallel to the yz plane will
be treated classically [3]; the y and z components of velocity will then be
constant and the z component will be taken to be zero. At time T , the
particle encounters a screen that is parallel to the xz plane and contains a
long sharp-edged slit parallel to the z axis with width 2b and centre where
x = x0. It will be assumed that T and x0 are both positive and that 0 <
b < x0. When 0 < t < T , the probability density for the x component of
position is a uniform distribution and the corresponding wave function is not
normalizable [2]. (This is because the particle was taken to be located at a
point when t = 0.) The wave function is di�racted at the slit when t = T
and after a further time � is given in terms of Fresnel integral functions by

 (x; T + �) =

s
T

4b(� + T )
exp

"
imx2

2�h (� + T )

#
[C(u) + iS(u)]u2

u1
(3)

where

u1 =
x� (1 + �=T )(x0 + b)q
(��h=m)�(1 + �=T )

; u2 =
x� (1 + �=T )(x0 � b)q

(��h=m)�(1 + �=T )
(4)
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and �h is Planck's constant divided by 2�. The wave function in Equation (3)
is normalized to unity and the square of its modulus represents the condi-
tional probability density (at time T + �) for the x component of position
on a second screen parallel to the xz plane, given that the particle did not
impinge on the �rst screen at time T .

O x 0 x

y

2b

Screen  2

Screen  1

Figure 2: Experimental Arrangement for One-Slit Di�raction

It is useful to introduce a dimensionless variable � and dimensionless param-
eters �, � and � through the de�nitions

� =
x

x0
; � =

b

x0
; � = 1 +

�

T
and � = x0

r
m

��h��
: (5)

Then � = 1 at the slit centre and the width parameter � satis�es 0 < � < 1.
The parameter � is a geometrical scaling factor that gives the ratio of the
width of the slit in the �rst screen to the width of the projection of this
slit from the origin O onto the second screen. It should be noted that the
parameter � varies directly as

p
m and inversely as

p
�h. It follows from

Equations (3), (4) and (5) that if

P (�; �; �; �) =
1

4��

n
[C(�2)� C(�1)]

2 + [S(�2)� S(�1)]
2
o
; (6)
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where
�1 = � [� � �(1 + �)] and �2 = � [� � �(1� �)] ; (7)

then
P (�; �; �; �) d� = j (x; T + �)j2 dx: (8)

For �xed values of the parameters �, � and �, the quantity P (�; �; �; �)
therefore represents the position probabilty density (in dimensionless form)
at the point �.

To obtain graphs of the probability density, a Maple function P will be de�ned
and then used with particular parameter values in the plot command. It will
be convenient �rst to de�ne Maple functions CZ and SZ that correspond to the
combinations of Fresnel cosine and sine integrals appearing in Equation (6).

> CZ:=(xi,beta,theta,mu)->
> C(mu*(xi-theta*(1-beta)))-C(mu*(xi-theta*(1+beta))):
> SZ:=(xi,beta,theta,mu)->
> S(mu*(xi-theta*(1-beta)))-S(mu*(xi-theta*(1+beta))):
> P:=(xi,beta,theta,mu)->(1/(4*beta*theta))*
> (CZ(xi,beta,theta,mu)^2+SZ(xi,beta,theta,mu)^2):
> plot(fP(xi,0.1,2.0,1.0),P(xi,0.5,2.0,1.0)g,xi=-4..8,
> labels=[xi,P],labelfont=[HELVETICA,BOLD,14],
> numpoints=600,axes=frame);
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Figure 3: One-Slit Di�raction Patterns
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For both graphs shown in Figure 3, � = 2:0 and � = 1:0. The curve with
the lower central peak corresponds to the narrower slit (� = 0:1), while the
curve with the higher central peak corresponds to the wider slit (� = 0:5).
There is in both cases a non-zero probability of detecting the particle outside
the classically allowed region, which is the projection of the slit in the �rst
screen from the origin onto the second screen. This region has centre where
� = � = 2:0 and half width �� (that is, 0.2 for � = 0:1 and 1.0 for � =
0:5). The quantum-mechanical broadening beyond the classical region is a
manifestation of the di�raction of the wave function by the slit.

4 Two-Slit Di�raction and Interference

For a slit of width 2b with centre where x = �x0, the di�racted wave func-
tion � is obtained from Equations (3) and (4) by replacing x0 by �x0. When
both slits are present, the complete wave function is a coherent superposi-
tion, with equal weightings, of the two one-slit wave functions � and  . If
the quantum-mechanical broadening is su�ciently large at time T + � for
the di�racted wave functions to overlap signi�cantly, interference between
the two components will be observable in the resulting probability density.
Moreover, if the particle is electrically charged and there is a static magnetic
ux string [3] embedded in the �rst screen parallel to and between the two
slits, there will be a relative phase change between the two components which
gives rise to a shift of the interference pattern on the second screen. This is
the Aharonov-Bohm e�ect [5, 6, 3]. If � = q�=(�hc), where q is the charge of
the particle, � is the magnetic ux and c is the speed of light in vacuo, then
the complete normalized wave function (apart from a multiplicative phase
factor) at time T + � is

1p
2

h
�(x; T + �) + ei� (x; T + �)

i
: (9)

The corresponding dimensionless probability density is given by

P (�;�; �; �; �) =
1

8��
��

fcos� [C(�2)� C(�1)]� sin� [S(�2)� S(�1)] + C(�2)� C(�1)g2+
fsin� [C(�2)� C(�1)] + cos� [S(�2)� S(�1)] + S(�2)� S(�1)g2

�
(10)

where �1 and �2 are de�ned as before by Equations (7) and

�1 = � [� � �(�1 + �)] and �2 = � [� � �(�1� �)] : (11)
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The Maple function P is now rede�ned to reect the presence of two slits
and to incorporate the dimensionless ux parameter �. For this purpose, the
previously de�ned functions CZ and SZ as well as two new functions CE and
SE will be used.

> CE:=(xi,beta,theta,mu)->
> C(mu*(xi-theta*(-1-beta)))-C(mu*(xi-theta*(-1+beta))):
> SE:=(xi,beta,theta,mu)->
> S(mu*(xi-theta*(-1-beta)))-S(mu*(xi-theta*(-1+beta))):
> P:=(xi,alpha,beta,theta,mu)->(1/(8*beta*theta))*
> ((cos(alpha)*CZ(xi,beta,theta,mu)-
> sin(alpha)*SZ(xi,beta,theta,mu)+CE(xi,beta,theta,mu))^2+
> (sin(alpha)*CZ(xi,beta,theta,mu)+
> cos(alpha)*SZ(xi,beta,theta,mu)+SE(xi,beta,theta,mu))^2):
> plot(P(xi,0,0.1,2.0,1.0),xi=-10..10,numpoints=600,
> labels=[xi,P],labelfont=[HELVETICA,BOLD,14],axes=frame);
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Figure 4: Two-Slit Di�raction and Interference Pattern

Figure 4 shows a typical two-slit di�raction and interference pattern. Because
� = 0 in this case, there is no Aharonov-Bohm e�ect and the graph is
symmetric about the line � = 0.

It is evident from Equation (10) that the probability density is periodic in
� with period 2�. The following Maple code generates an animation of the
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Aharonov-Bohm e�ect in which the animation parameter � varies over one
period in 8 steps.

> with(plots):
> n:=8:
> F:=plot(P(xi,0,0.1,2.0,1.0),xi=-3..3,numpoints=600,
> color=red):
> for i from 0 to n do
> G.i:=plot(P(xi,i*2*Pi/n,0.1,2.0,1.0),xi=-3..3,
> numpoints=600,color=blue):
> F.i:=display([F,G.i],labels=[xi,P],
> labelfont=[HELVETICA,BOLD,14]):
> od:
> display([seq(F.i,i=0..n)],insequence=true,axes=frame);

The periodicity of the e�ect may be demonstrated visually by playing the
animation. (It should be emphasized that each frame of the animation shows
the Aharonov-Bohm e�ect due to a static magnetic ux string.) The moving
pattern (coloured blue) appears against a �xed background (coloured red)
consisting of the central portion of Figure 4, for which � = 0. As � changes,
the moving pattern varies within the envelope of the one-parameter family
of curves de�ned by Equation (10) with � = 0:1, � = 2:0 and � = 1:0. The
third frame of the animation, corresponding to � = �

2
, is shown in Figure 5.
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Figure 5: Aharonov-Bohm E�ect with � = �
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5 Classical Limit

The classical limit of the quantum-mechanical probability density (10) is
obtained by letting �h tend to 0 or by letting m tend to 1. In either case,
the parameter � de�ned in the third of Equations (5) tends to 1 while the
remaining parameters �, � and � are �xed. The classical distribution is
constant and non-zero within the region obtained by projecting the two slits
in the �rst screen from the origin onto the second screen and is zero outside
this region. The normalized classical distribution is therefore given by

Pc(�; �; �) =
1

4��
fH[� � �(�1� �)]�H[� � �(�1 + �)]+

H[� � �(1� �)]�H[� � �(1 + �)]g (12)

where H is the Heaviside unit step function and � 6= �(�1 � �). Now as �
tends to 1, each of the Fresnel integral functions appearing in the expres-
sion (10) for P tends to 1

2
or �1

2
according as the argument �1, �2, �1 or �2 is

positive or negative. By using this and considering separately the �ve open
intervals obtained by removing the four points �(�1 � �) from the � axis,
it may be shown that the classical distribution Pc is indeed the limit as �
tends to 1 of the quantum-mechanical probability density P . (It may also
be shown that at the four points where Pc is discontinuous, the limit of P is
1=(16��).) The fact that the right-hand side of Equation (12) is independent
of � then means that the Aharonov-Bohm e�ect vanishes in the classical
limit.

An animation of the approach to the classical limit in which � = 0, � = 0:1,
� = 2:0 and � increases exponentially is obtained as follows.

> n:=20:
> for i from 0 to n do
> F.i:=plot(P(xi,0,0.1,2.0,2^i),xi=-3..3,0..2,labels=[xi,P],
> labelfont=[HELVETICA,BOLD,14],numpoints=600):
> od:
> display([seq(F.i,i=0..n)],insequence=true);

The graph that appears in the �nal frame of the animation, which is shown in
Figure 6, is a very good approximation to the graph of the classical distribu-
tion (12) with the stated parameter values. It should be noted, however, that
as the �nal frame corresponds to a �nite (though large) value of �, Figure 6
is the graph of a function that is di�erentiable for all �.
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Figure 6: Two-Slit Pattern with � = 220
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