TEACHING MATHEMATICS USING MATHEMATICA

PAUL C. ABBOTT
Department of Physics, University of Western Australia
Nedlands, WA 6907, Australia

The Mathematicacomputer algebra system (CAS) is an attractive medium for teaching mathematics.
New features inMathematica3.0 include editable typeset mathematical expressions; customizable
palette interface; automatic arbitrary—precision control of numbers; numerical partial differential
equations; and integrated hyperlinked documentation.

Mathematica is introduced through examples: antisymmetric operators; Gram-Schmidt
orthogonalization (vectors and orthogonal polynomials); contour integration (residue theorem) and line
integrals; the Kepler equation (series methods); and spheroidal harmonics (eigenfunctions of partial
differential equations). These examples highlight the power and versatilitgtbematicaand indicate

its application to teaching mathematics.

1 Introduction

Mathematica[l] was designed as a system for doing mathematics by computer. It includes arbitrary
precision and exact numerical computation, symbolic computation, graphics, sound, hyperlinked
documentation, and interprocess communicatiah integrated together in one easy-to—use package.
More so than any other discipline, mathematics teaching has embraced the use of CAS: In particular,
Mathematicas used extensively for teaching mathematics as a look MateSourcq2] World Wide

Web site reveals.

When using a CAS for teaching it is important that complicated algorithms and difficult concepts
can be handled in an elegant and intuitive fashion and that their implementation and generalization is
straightforward. Too often the language, syntax, and interface of the CAS overpower the pedagogy.
Students and teachers can find it difficult and confusing to translate mathematical expressions into CAS
syntax. The designers dlathematicaare well aware of this difficulty and, with version 3.0, have
addressed these concerns by making the interface fully customizable. Palettes, su@asis theut
palette, simplify the input of functions. For example, the sub—palette:
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simplifies the input of (partial) derivatives, integrals, sums, and productdNdtadonpackage, loaded
via the command

<< Utilities'Notation’

enables users to define their own input and output syntax using palette such as:

Notation [m < O]

Notation [m = O]

Notation [m < O]

Using this palette to define a general mapping in termvdatfiematicas Function  operator:
SetOptions  [Notation, WorkingForm - TraditionalForm 1;
Notation [f_ :x_ w»y_ =f : =Function [x_, Evaluate [y_111]
mappings can then be entered using ordinary mathematical notation:

h: X xcogx?)



h(y?)
y? cosy?)

This paper, typeset usiniylathematica presentssolutions to a selected set of mathematical
problems typical of those covered in undergraduate mathematics, physics, and engineering courses. The
reader is invited to judge how well tivathematicasolutions balance syntax and pedagogy. Note that
input , output , and graphics are interspersed between lines of—exdctly as generated by
Mathematica.

2 Antisymmetric Operators

Using the high—levesignature functionSignature , and thePermutations  operator, both built
into Mathematicait is easy to construct completely antisymmetric functioas,functions that change
sign under the interchange ahy pair of arguments.Signature  can be thought of as the totally
antisymmetric Levi—Civita tensar For example,

€_ .= Signature[{i}]
€321
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The following simple code antisymmetrizes an arbitrary function:
Antisymmetrize[f ] := Module[{p = Permutationg f]}, Signature[f] Signature/@ p. p]

For example,
Antisymmetrize(f (a, b, ¢))

f(a,b,c)—f(a,c,b)— f(b,a, c)+ f(b,c,a) + f(c,a b)— f(c, b, a)
After swapping arguments andb in the previous expression (denoféth Mathematic
% /.{a->Db,b->a)

—-f(a,b,0)+ f(a,c,b)+ f(b,a ¢c)- f(b,c,a - f(c,a b)+ f(c, b, @)
and adding to the original function:
% + %%

0

we see that the function has indeed been antisymmetrized.

3 Gram-Schmidt Orthogonalization

Starting with the sdu;, Uy, ..., Uy}, along with theprojection operator
Projection(f_, g ) :=f —{f, g)g

where(f, g) is any suitablénner product andnorm

W= VA )

Gram-Schmidt orthogonalization produces tbghonormal set{vi, v,, ..., vy} by the iterative
construction: Vi = U, vy = ﬂ\-‘g-l— Vo =l — < Uy, Vi >V, vy = W\\gT
V3 =U3—<U3, V1 >Vi —<Uz, Vo >Vp, V3 = m , and so on ([3], 817.4.2).

The above sequence of operations can be recognized as the pair-wise "folding" of the projection
operator, followed by normalization. Thfanctional representatignleads to a neat and powerful

implementation of Gram—-Schmidt orthogonalization ugingctional programming

#1
GramSchmidt := Fold[Append][#1, (m&][Fold[Projection, #2, #11)&, 3, #1]&;



The heart ofGramSchmidt is the iterative projection of each veetamplemented using the
functional operatiorrold . Importantly, this code is a good examplebject—oriented programming
(OOP) as it is "re—usable" in the sense that it worksafbitrary projection operator, inner product,
and norm. In other words, this simple piece of code can be used to orthogonalize vectors, matrices,
polynomials, and functions.

Readers might feel that, even though this code is short, its workings may not be readily understood
by students who do not have a solid groundindvisthematicaor in functional programming; the
syntax could easily overpower the pedagogy. One can, if desired, "hide" the details from the student by
savingGramSchmidt in an external package which is automatically loaded as required. In fact, the
Orthogonalization package contains a similar routine for Gram—-Schmidt orthogonalization.

3.1 Vectors

Gram-Schmidt orthogonalization can be used to construct an orthonormal set of vectors. To apply
GramSchmidt to a set ohi—dimensional vectors (entered as matrix), say

111
u:[l 1 0];
321

we define the inner—product to be the uddal product:
(f_9)=f.g

The resulting orthonormal vectors are
v = GramSchmidt(u) // ExpandAll
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as is easily verified usin@uter (the ordinaryouter product to form all possible pair-wise inner—
product (e, (#1,#2 )&) combinations:
Outer[(#1, #2&, v, v, 1] // MatrixForm
100
01 0]

001

3.2 Orthogonal Polynomials

In most undergraduate mathematics courses, it is mentioned that Gram-Schmidt orthogonalization can
be used to construct an orthonormal set of polynomials. However, because of the tedious computation
of integrals involved, usually only very simple examples are considered. Consider constructing an
orthonormal set of polynomials,[x], of degreen, over the interval-1, 1] with unit weight function

such thaty, [+ 1] = 0. Noting that1 - x?) x"~vanishes at +1, we start with the basis

Ulx 1=1;
up [x 1= f(l— x2) X"t d x
X" 1 X
n n+2
Note that in integralMathematicauses the special symhdl(i.e., a double—struck) to denote the

differential element. This is not just a syntactical device toMalhematicawhere the integrand ends
and what is the integration variable; the designefdathematicawere attempting to make clearer the




important distinction betweeatix—often interpreted by students as the latté&times" the lettex—and
dx. Many students findx confusing and they are not helped by physicists and engineers who persist
in "canceling" d's in expressions involving differentials. MoreovevMathematicauses this same
syntactical device for the exponential e, the imaginaryi, ¢, and so on which, unlike ordinary
mathematical notation, highlights that these symbols are special.

It is easily verified that this set of polynomialig]x], satisfyu;,[+1] == O:

{Up (1), up (D), up (=1), uy (D} // Simplify
{0,0,0,0

Gram-Schmidt orthogonormalization of the set
u = Table[u, [X], {n, 0, 4]

X2 1 X 1 X 1 X2

—_— 2————— e —_—
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with the inner product

1
(f_,g):= flfgdx

yields
v = GramSchmidt(u) // Simplify
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This set is orthonormal:
Outer[(#1, #2&, v, v, 1] // Simplify
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and visualization clearly demonstrates the behavior of these polynomials:

Plot|Evaluate[v], {x, -1, 1}, PlotStyle » Table[GrayLevel| ]. {i, Length[v}]];

i
Length[v] + 2

/ -0.5//

Most students observe that the resulting polynomials look somewhat similar to trigonometric
functions. Moreover, the majority of science and engineering undergraduates should not find it difficult
to modify this code so as to construct other sets of orthogonal polynomials.



4 Contour Integration, Line Integrals, and the Residue Theorem

Contour integralsare usually presented in mathematics courses after an introduction to complex
function theory. Students are told about the great range and power of contour integration-methods
some courses are lacking when it comes to a sufficiently wide range of examples which students can
actually work through by themselves as an aid to understanding the mechanics of contour integration.
Related topics such as tresidue theoremare quite advanced and students need a good set of examples
and a tool which can assist with the necessary and often complicated algebraic manipulation.

At an early stage in most undergraduate physics and engineering courses, students are introduced
to line integralssuch asfy F(s)-ds when taught about the work done by a fofeedisplacing a mass,

m, along a path. However, it is fair to say that most students do not fully appreciate how to compute
such integrals in generalor even what one means by a line integral since, for conservative forces, one
avoids computing such integrals directly by using energy arguments instead.

Many CAS do not have the necessary tools for students to investigate line and contour integrals by
themselves. Also, to avoid confusion, if such tools do exist it is particularly important that the notations
used are self-consistent and consistent with the ordinary mathematical usage. This section indicates
ways of introducing line and contour integration usitethematica

4.1 Numerical Contour Integration

Students often feel more comfortable initially if they are presented with numerical examples. Consider
the closed polygonal contoyr, specified by

Y= 2{11 i! _11 _il 1}1

v can be visualized usinigstPlot by computing the real and imaginary parts of each vertex and
transposing the resulting matrix:

ListPlot[{Re(), Im()}", PlotJoined - True, AspectRatio - Automatic|;

Using theNotation package it is straightforward to define an interpretation rule in natural
syntax for numerical contour integrals ushimtegrate

Notation [95 f dz_ = Nintegrate [f_, Evaluate [Join [{z_}, x_]]]]
Y_

z

The numerical value og% fﬁy ‘7 dzis easily computed:
1

@Z
%——dz//Chop
vy Z

2ri

1.

Note thatChop removes the small imaginary part. The result ig¢seueof the integrand at= 0:



eZ
res{—, {z, 0}]
z
1

For an analytic functiori[z], the contour integrai = %ﬁy fflllz?
within the contouy. For example, the polynomial
2 1

f =22 -7 - —+—;
@) 2+2

dz gives the number of zeras,

has the roots
r=12z/.Solvdf(2) ==0, 7]
1 1 }
V2 ' V2

For anarbitrary closed contour containing these roots (we Epdog to show the locations of the
zeros a$oint  primitives):

{1,-V-1, 1% -

ListPIot[{Re(y), Im(y)}T, PlotJoined— True, AspectRatio —» Automatic,
Epilog - {GrayLevel[0.5], PointSiz§0.03, Point/@ {Re(r), Im@)}’ HE

the integral taken aroundconfirms that there are 5 zeros inside the contour:

1 § fl(Z)d ch
2ni Yy (2 2/{ Chop

5.

It is straightforward to do contour integration over parametrically defined paths:
==b

6_
Notation [J f_dz_, 4
6_=a -

= Nintegrate |

f Dt [z]1/.2 -0_

where we us®t to change variables. For example, a circle in the complex plane can be parameterized
usingr ¢?. Here is a circle of radius 2:

Evaluate [Simplify [



ParametricPlot[{Re2¢’?), Im(2¢°?)}, {6, 0, 27}, AspectRatio— Automatic,
Epilog - {GrayLevel[0.5], PointSizg0.03), Point/e@ {Re(r), Im(»)}" }];

The integral offf/[[zzll around this contour again confirms that there are 5 zeros inside the contour:

1 fO::Zﬂ f/ (Z) d // Ch
Z, 40 it [0}
2ni Jo==0 f(2 22 P

5.

4.2 Line Integrals

Line integrals often arise when dealing with scalar, vector, and tensor fields. In general, these integrals
take the formfC P(x)-dx, wherec denotes the integration path. In three—dimensions, an explicit form

is fCP(x, Y, 2dx+ QX Y, 2dy+ R, Y, 2 dz wherex, y, andz are the coordinates along the path

One way of dealing with line integrals is to parameterize the path by specifying the coordinates in
terms of a parametdr x = f(t), y=g(t), z=h(t), and the range of-values which traces out the
desired pathg. A direct implementation [4]

Linelntegrate(f : Literal [ _.d_|+(_.d_.)],c Equal,p:{t , , }, x:{ }:=
f(f /. First[Solvdc, x]] /. {dt - 1, Literal [Dt][ ] -» O} dp

might appear somewhat obtuse, but its application is straightforward. The pattern
f:Literall_.d_|+(_.d_.)] usesAlternatives (i.e, | ) to test that the argument corresponds to a
one-dimensional line integraP(x)dx or to a multi-dimensional line integral of the form
P Y, ..0)dx+Q(XY, ...)dy+..., etc The use ofdx ensures that the appropriate change of
variables takes place automatically. For example

dx /. x = sin@)

cogH)do

Solve is used to express the variables in terms of the parameter, and the substitutions enable the
parametric integral to be computed usintggrate
Here is a particular three—dimensional example. Integrate the vector function

FOC Yy 2D =08y, yz 2}
along the patla:
c(6) = {cog0), sin(@), sin(26)};

Visualizing the parametric path is easy:



ParametricPlot3D[Evaluate[c(0)], {0, O, 2x}];

Defining the cartesian variables:
x={xv z
the line integral is immediate:
Linelntegrate(f(x).d x, x == ¢(0), {0, 0, 2x}, x) // Expand

Ve
4
4.3 Residue Theorem

i 0o
f_m %L dz, whereA,[z] is a Hurwitz polynomial

Consider computing the integigl = TN

27Z'L
n .

An 2] := Zai ra
i=0

and

n-1

Dy [2]:= ) 6 2D
i=0

It is not trivial for a CAS (or a student) to compigedirectly. However, from theesidue theorer(see

884.1-3 of[5]), ifg andh are analytic at; andg(z ] + 0 h[z.] =0, andh’ [z]# 0, thenf[z] = has
asimple poleatz, the residue of atz is Resf, z) =%+, and 2m 5 ﬁg = rg[é]] , Wherey
is a simple closed curve enclosing theHence, it can be seen that the mteg{a'bduces to computing

a sum of% over the simple polegg, the roots ofA,[z]. It should be apparent that this is

how one would compute such integrals by hand. Moreover, using the b&tetsSum function, one
can computé, directly as follows:

Dn[#]
I, :=RootSumee Function/@{ﬂn [#1, M [#] . }// Simplify
— An [-#]
For example,
1y

a1 aa (g 62 — s 0p) + ag a3 (g 03 — @4 01) + a2 (3 @4 g — @g @1 03)

2a0 a4 (ag4 a4 +ag @§ — a1 az a3)



This example indicates how one can add extra knowledge, such as the residue theorem, to a CAS.

5 Kepler Equation

Methods involving power series are fundamental in mathematics, science, and engineering courses.
However, because of algebraic complexity, most courses usually only cover trivial examples which
hide the true power of such methods from students. It is important that the implementation of power
series in a CAS be elegant, powerful, general, automatic, easy to use, and recognizably similar to
ordinary mathematical notatiedfor otherwise the student will not see the relationship to the
mathematical method being taught.

The Kepler equatiors = u + esins, arises in celestial mechanics. Regardiras a small quantity,
this transcendental equation can be solved using power séviathematicasyntax naturally lends
itself to the solution of this problem. Definiisg= u + a, the equation reduces &= esin(u + a), which
can be solved by introducing the power series recurrence relation:

a 1= ay = esin(U + ax_1) + 0©"*;

Sincee is a small parameter, &0, a1 - a — a, and hence the Kepler equation is formally

satisfied. Note thatlynamic programming(i.e., the syntaxax :=ax =...) is used to store the
intermediate computations. Defining the initial condition:
a =0;

we immediately obtain

a

sin(u) e+ cogu) sin(u) € + O(e®)
Here is the sixth approximation converted infécarrier seriesexpansion:
as // Normal // TrigReduce

1 . 6 . 6 . 6 . -
1950 (40 sin2u) €® — 512 si4u) €® + 648 sin6u) €® + 10 sinu) € — 405 sin3u) € +

625 sin5u) e — 320 sin2u) e + 640 sin4 u) e — 240 siru) €® + 720 sin3u) € +
960 sin2 u) € + 1920 siru) )
Normal converts the power series into a polynomiiigReduce rewrites products and
powers of trigonometric functions in terms of trigonometric functions with combined arguments, and
/ indicatespostfix action of an operator (similar to the Umipe ). It is straightforward to collect

together all the terms involvin§in (using the patterisin[ ]  with the generic symbol _, and
pattern—matching in the previous expression:

Collect [%, sin ()]

27 s 125 5(e5 e ) (e6e4e2)_
—sinbu)e® + —sinbu) e’ +| — - — +e|sinu) +| — - — + — [sin(2u) +

80 384 192 8 48 6 2
3¢ 27 3 e 46 4
- " T8 sin(3u) + 3 15 sin(4 u)

The self-consistency of this solutidre(, whethera = e sin(u+a)) is easily checked:
ag —esin(u + ag) == O(e)9

True



6 Spheroidal Harmonics

Computing the spheroidal harmoniesomething not normally covered in undergraduate mathematics
courses- demonstrates hybrid numerical-symbolic computation and is a nice example of the power of
Mathematica Importantly, because the syntax does not dominate the message and the example can be
easily modified to handle a wide range of differential equations, such hybrid methods for solving
differential equations could be presented to undergraduate students.

6.1 Legendre Functions

Traditional mathematical notation is often ambiguous. Hence computer algebra systems cannot always
correctly interpret arbitrary mathematical expressions. One solution is to define your own interpretation
rules. Here we use thidotation package to attach input and output formatting ruldsetgendreP

enabling automatic interpretation of associated Legendre functions using the Bffiizx After

entering the desired format:

Notation [P7-[z_] e>LegendreP [n_, m_, z_ ], WorkingForm - StandardForm ]

then, for suitable parameters, closed—form expressions result:

P ()
135135
T Vi-a? @ - 1)2 (2261a° — 1615a* + 2553 — 5)

Using this notation, it is straightforward to implement a Legendre funcdourrence relation
(88.5.3 of [6]), here calle®, which automatically reduces sums of products of (integral) powets of
multiplied byP (2):

WU+VWP_ @D+ (v—pu+ P (D T
R = Z_k—' Pf,l—(Z_) 5 v=1 v+l :
- 2v+1

Mathematicaknows some basic properties of the associated Legendre functions, such as their
derivatives. Hence, using the recurrence relation above, it is straightforward to verify tRdizhe
satisfy the differential equation

* Py (2 P, (2 IS
(1-22)-—--—--(22 ]+[v(v+1)— ]P{,‘(z)::O;
22 dz 1-2

After multiplying the left-hand sidé.¢é., theFirst  part) of the differential equation g — 72):
(1- Z)First[%] // Together
Plo@u? ~Py@u? +2vP,@u-Pl,@u+zP_@u-22vP,_ @ u+
VP, -vP ,2-22v2 P @9+ 2zvP (9 +V? P (2)

then repeated application (using ) of the recurrence relationR) and simplification (using
Collect andFactor ) yields

Factor/@ Collect{% //. R, P-(2)]

0

6.2 Spheroidal Harmonics

Spheroidal harmonics typically arise when solving classes of partial differential equations using
separation of variables in spheroidal coordinates (see 8§17.4 of [7] and chapter 21 of [6]). The
differential equation for the (angular prolate) spheroidal harmonics is

62 m o m 2
Shmlclin] P Shm€lln] +(Am,n _@p e m

1-n% Shmlclinl = 0;

an? an 1-72

10



wheremis an integerg is theoblatenesparameter, andly,, is the eigenvalue. Despite the notatich,
can be positive or negative. The equation has singular points atl and the boundary conditions
require the solution to be regulamat +1.

From aMathematicaperspective, the notatidh m[c][n] is preferable t&nn[c, ] because it leads
to expressions only containimgdinary derivatives. One can think &,,[c] as apure functionandn
as adummy argumentSuch notation is advantageous because it is easily generalized and is useful
when working with operators, pure functions, and compiled functions.

One method for solving differential equations is to expand the solution into a suitable basis.
Rewriting the differential equation as

& Symlclin] dS mlclin] m?
—_— 2 — +|kk+mk+m+1) -
on? an 1-n2
(@ + (K+m+ 1) (K+ M) = Anp) SymClin];
reveals that it is very similar to the associated Legendre differential equation (see 86.1). In fact, since
P, (2) satisfies the left-hand side of the differential equation,

D=1-7%) Shmlclln] =

(1-n?)First[D] /. Sam[c] = Function[z P, (2] // Together;
Collect{% //. R, P-(z_), Factor]

0

it makes sense to use tagenfunction expansio®,m[cln] = X di" [C] Pm (). The recurrence
relation satisfied byl [c] is easily generated. First, we substitugeaericterm of the eigenfunction
expansion (using a pure function denotedFoyiction ) into the right—hand side of the differential
equation:

Last[D] /. Symlc] = Function[z, dg P}, (21;

Note that we have used the shorthaiydto representdy""[c]. We then (repetitively) apply the
associated Legendre function recurrence relation to simplify the resulting expression:

(Expand[%] //. R) // Expand;
Since k is a dummy summation index, we can ysEtern matchingto find the recursion
relationship that must be satisfied by the

% /. Pmsksa (Z) Ok C_> (PR di C/. k> k—a)
r= )
Pm+k ©))
The recurrence relation can be writen in the form (827.7.3 of [6])
ax 2 + (B — Amn) dk + vk dk2 == 0, where the coefficients are easily determined as follows:

a_ = Collect[Coefficient]r, di,21, ¢, Factor]

A k+2m+1) (k+2m+2)
2k+2m+3)(2k+2m+5)

PBx_ = Collect[Coefficientr, dk], ¢, Factor] + Ay,

2K +4mk+2k+2m-1)c?

K2 + P +k+ 2K
2K12m-1)(2Kkt2m+3) ¢ HMKsekmem

yx_ = Collect[Coefficient[r, dc_>1, ¢, Factor]

2 k-1Dk
(2k+2m-3)(2k+2m-1)

By truncating the infinite sumy,_, d¢"'[c] Pm. (), to N+1 terms, the recurrence relation
@k Ok + B Ok + vk dk2 ==Amn dk  leads to the tri-diagonal matrix eigenvalue problem,
Ap .d=Ampn d, where

An_Im_llc_]:=
Table[Switch[ j — k, 2, ay, 0, Bk, =2, Yk,

, O /.{m->m, c-> c}, {k, 0, N}, {j, 0, N}]

11



For example, with symbolic parameters &hé 2, the matrix reads
As[m][c] // MatrixForm

2 (2m+l) (2me2)

Zim+mz+m 0 T Terp i
0 FOE NP +3M+ 2 0
—@-m-;%%—n-@)— 0 %+wﬁ+5m+6
If we supply (exact) numerical parameters, say 0 andc = 1, and seN = 8, the matrix becomes

Ag[0][1] // MatrixForm

£+ 0% 0 0 0 0 0 O

02 0o~ 0 0 0 0 0

20X o £ o0 0 0 o0

o2 o o &Z o0 o0 o0

0 0% 0= o0 2 0 o0

oo o0& o o #E o0

o0 0 0 ¥ o0 o =X

0o 0 0 0 042 03X o0

0 0 0 0 0 0 o 022

It is apparent that the recurrence relation links only even or odd valdesHeince, one could
separate the solution (and the matrix) into two cases. However, in the following, both cases are treated
together. This has the benefit that, for a different differential equation (where the recurrence relation
may contain more than three terms or link even and odd vallgstiof same method still works.

Now we compute and sort (usilgprt andTranspose ) the set of eigenvectord)(in order of

increasing eigenvalu@mn) :
{4, d} = Sort|Eigensystenj% // N]T]T;
NumberForm|[A, 8]

{0.31900006, 2.5930846, 6.5334718, 12.514462, 20.508274, 30.505405, 42.503818,
56.504696, 72.50385%7

These eigenvalues agree perfectly with Table 21.1 of [6]. Nevertheless, they are only approximate
because we have truncated the infinite sum. Incredblrgds to a better approximation.
We need to normalize the spheroidal harmonics. A number of normalization conventions exist in

the literature; perhaps the simplest one is the Stratton—Morse—Chu-Little-Corbato scheme,
Yo LML g = ML yhich has the effect th&m[cl[7] —» PR (7) asy - 1.

r! (n-m)! ?
In the following we truncate the system by settihg 25. Combining the steps above, and using
list manipulation(Mathematicacan work directly with list or vector operations applied to functions),
the normalization can be simultaneously applied to all the eigenvectors, yieldinghtihe setof

eigenfunctions (and eigenvalues) for fixagndc:
Sim_1[c_] := SIml[c] = Module[{d, k, n, r, n, N' = 25},
{A[m][c], d} = Reversg/@EigensystenfAx [m][c] // N] // Chop;

Table[ S22, {0, m, N + m}]

-m)!’

d=d

d. Table] 27 «r 0, )]

Compile[n, Evaluate[d. Table[P;,,, (), {k, 0, N}111]

The syntax is quite elegant: Pure function notation coupled dvittamic programminds used to
record the spheroidal harmonics (and their corresponding eigenvalues) as they are computed; List

12



manipulation enables the whadetof harmonics (for a givem andc) to be computed in one go; the
associated Legendre functions are built—-in and exact closed—form expressions are available (so their
evaluation is rapid and accurate); aaddmpile makes the computation fast. Becala&thematica
supports arbitrary precision arithmetic, it is simple to modify this code to work with any desired
precision. Furthermore, the relationship between this code and the algebraic expressions presented in
the literature is immediate thus greatly reducing the chance of coding error. As an aside, efficient
computation of the derivatives of the spheroidal harmonics is trivially implemented by modifying the
above code to include derivatives of the associated Legendre functions which are computed exactly.

To project out a particular eigenfunction, we use the notation

Su_m_1lc_1n_1/; m = n:=S[mllclinlln - m+1]
The eigenvalues are produced asde—effectof the computation of the related eigenfunction:
N_n_le 1/ m<n:=(Smllcl; Alm]lclln—m + 1])
To give a concrete example, with= 2 andc = 5, the first three eigenvalues are
{A2,2[5], A2,;3[3], 22,4151}
{8.74767, 19.136, 29.6288

with corresponding eigenfunctions:

Plot[{S; [21[51[x], Ss[21[51[x], S« [21[51[X]}, {x, -1, 1}, PlotStyle - Table[Hue[IE], G, 3]

15
10

-15

Writing the spheroidal differential equation as
2
m

Dm_[n_1lc_In_] = 8, (L= 5?) 8, SmInllclinD + | Amn [l = & ? - SwInllclinl;

1-72

it is then straightforward to see how well each numerical solution satisfies the differential equation:
Off [CompiledFunction::cfr]
Plot[Evaluate] D, [2][3][7]], {n, -1, BI;

4x10°7
3x10'7
2x10°7

N et A
Y
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Conclusions

| hope that these examples have demonstratedvibtitematicais an important and useful tool for
teaching mathematics. The Notebook interfaedich includes two-dimensional typeset
mathematical input and output, hyperlinked text, and paleigsby itself, an excellent presentation,
teaching, and research tool. | have found that students enjoyMaihgmaticaand, more importantly,

they use it not just for the topics | teach them, but for a wide range of subjects including mathematics,
geophysics, and chemistry. Of course, students usually try to use the tools that they arenthiatpht

makes it especially important that we teach them using the best tools available. In our teaching, rather
than using a collection of small programs designed to elucidate one or two concepts, it is advantageous
if the tools we offer have wide application and | argue Mathematicadefinitely qualifies in this
respect.

In summary:

Antisymmetric Operatorshowed that, because tMathematicaprogramming language is very
high—level, operations such as symmetry and permutation are built-in and easy to use. Hence the
teacher can program at the desired level of abstraction. Functional programming is closely related to the
way mathematics is actually dere.g, working with operations such as permutatiaather than
focusing on implementation details like "do-loops", "for-loops", or "if-then statements", as required in
procedural programming languages. Since the functional code is direct and simple it is easy for students
to understand and generalize.

Gram-Schmidt Orthogonalizatiorindicated how object-oriented programming is useful for
implementing and working with abstract entities such as projection operators, inner products, and
norms. One small piece of functional code orthogonalizes vectors, matrices, polynomials, and functions.
Importantly, students and teachers do not need to Wiatlematicawell, nor understand functional
programming, to be able to use themmSchmidt routine.

In Contour Integration, Line Integrals, and the Residue Theprmwueral examples of contour
integration were presentedlathematicaincludes tools enabling students to investigate line and
contour integrals by themselves. Also, it is possible to introduce a notation and corresponding syntax
for contour integration that is self-consistent and consistent with the ordinary mathematical usage.

Since most real-world problems are not exactly soluble in closed—form, approximation methods
are usually requiredKepler Equationshowed how symbolic series solution of a transcendental
equation is straightforward. Although exact solution is possible for this example, series methods are
generally useful and it is easy to use such series to achieve any desired numerical accuracy.

The Spheroidal Harmonicsection showed hoMathematicacan be used to obtain the recurrence
relation, eigenvalues, and spheroidal harmoniicectly from the differential equation. Using list
manipulation, the whole set of eigenvalues and harmonics are produced and manipulated as a single
object. TheMathematicacode is quite simple because the implementation is directly and easily related
to formulae presented in the literature. This reduces the chance of coding error and makes it easier for
students to follow.
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